Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Research (Wash D C) ; 7: 0474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301263

RESUMEN

A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)-C(sp3) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.

2.
PLoS Comput Biol ; 20(9): e1011914, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226337

RESUMEN

Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.


Asunto(s)
Algoritmos , Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Modelos Biológicos , Aprendizaje Automático , Gráficos por Computador , Modelos Estadísticos , Humanos
3.
ACS Omega ; 8(44): 41004-41021, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970044

RESUMEN

The use of different types of chemicals in upstream oilfield operations is critical for optimizing the different operations involved in hydrocarbon exploration and production. Surfactants are a type chemical that are applied in various upstream operations, such as drilling, fracturing, and enhanced oil recovery. However, due to their nonbiodegradability and toxicity, the use of synthetic surfactants has raised environmental concerns. Natural surfactants have emerged because of the hunt for sustainable and environmentally suitable substitutes. This Review discusses the role of natural surfactants in upstream operations as well as their benefits and drawbacks. The Review discusses the basic characteristics of surfactants, their classification, and the variables that affect their performance. Finally, the Review examines the possible applications of natural surfactants in the upstream oil sector and identifies areas that require further research.

4.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375169

RESUMEN

Significant amounts of oil remain in the reservoir after primary and secondary operations, and to recover the remaining oil, enhanced oil recovery (EOR) can be applied as one of the feasible options remaining nowadays. In this study, new nano-polymeric materials have been prepared from purple yam and cassava starches. The yield of purple yam nanoparticles (PYNPs) was 85%, and that of cassava nanoparticles (CSNPs) was 90.53%. Synthesized materials were characterized through particle size distribution (PSA), Zeta potential distribution, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The performance of PYNPs in recovering oil was better than CSNPs, as found from the recovery experiments. Zeta potential distribution results confirmed the stability of PYNPs over CSNPs (-36.3 mV for PYNPs and -10.7 mV for CSNPs). The optimum concentration for these nanoparticles has been found from interfacial tension measurements and rheological properties, and it was 0.60 wt.% for PYNPs and 0.80 wt.% for CSNPs. A more incremental recovery (33.46%) was achieved for the polymer that contained PYNPs in comparison to the other nano-polymer (31.3%). This paves the way for a new technology for polymer flooding that may replace the conventional method, which depends on partially hydrolyzed polyacrylamide (HPAM).

5.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050723

RESUMEN

This paper describes a terahertz (T-ray) cameraless imaging and profile mapping technique for accomplishing the imaging and/or mapping of a whole wafer with fabricated dies for devising a criterion to sort out good dies. A stratagem for decoupling the wavelength's dependence on image formation is described, whereby the Abbe diffraction limit is overcome, and a high-resolution image is generated by a larger wavelength T-ray. The mechanics of cameraless image formation is discussed. A 200 mm diameter patterned wafer's image details have been presented from which die-to-die inconsistencies were investigated. A profile of a row of dies was formed from the scanned intensity and compared with the profiles obtained from the graphical analysis of the image of the same dies. It is demonstrated that a criterion could be established either from the scanned profile or from the profile generated from the graphical analysis of the image. A known good die's profile could be used as a reference to compare with the other dies' profiles on the same wafer. Such a criterion could be used to sort the good from bad dies. The technique is extended to a whole wafer populated with die patterns via the profile mapping of the entire wafer. The profile mapping of the whole wafer could be used to compare and sort all wafers from the same batch. The Fab yield is improved by maximizing the count of good dies by applying the efficient sorting criterion.

6.
ACS Omega ; 8(9): 8703-8711, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910982

RESUMEN

The effectiveness of CO2-enhanced oil recovery (EOR) is strongly dependent on the CO2-oil minimum miscible pressure (MMP) value, which can be estimated using various methods. In this study, interfacial tension (IFT) and slim-tube tests were used to estimate the MMP value. Experimental results indicated that the IFT test had a higher MMP value than the slim-tube test. Particularly, the outcomes of IFT and the slim-tube tests differed slightly, i.e., 0.7% and 4.3% at 60 and 66 °C, respectively. Furthermore, the current work also compares MMP data gathered using visual observation and equation of state (EOS) simulation. The MMP estimated by EOS is higher but close to the IFT and slim-tube recovery factor method, where all results are within the 1650-1700 psi and 1700-1800 psi visual observation ranges at 60 and 66 °C, respectively. However, MMP deviations concerning the slim-tube test and EOS were consistent at different temperatures. This study offers an alternative to estimate and evaluate CO2-oil MMP for EOR applications accurately and efficiently.

7.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987308

RESUMEN

Polypyrrole (PPy) nanoparticles are reliable conducting polymers with many industrial applications. Nevertheless, owing to disadvantages in structure and morphology, producing PPy with high electrical conductivity is challenging. In this study, a chemical oxidative polymerization-assisted ultra-sonication method was used to synthesize PPy with high conductivity. The influence of critical sonication parameters such as time and power on the structure, morphology, and electrical properties was examined using response surface methodology. Various analyses such as SEM, FTIR, DSC, and TGA were performed on the PPy. An R2 value of 0.8699 from the regression analysis suggested a fine correlation between the observed and predicted values of PPy conductivity. Using response surface plots and contour line diagrams, the optimum sonication time and sonication power were found to be 17 min and 24 W, respectively, generating a maximum conductivity of 2.334 S/cm. Meanwhile, the model predicted 2.249 S/cm conductivity, indicating successful alignment with the experimental data and incurring marginal error. SEM results demonstrated that the morphology of the particles was almost spherical, whereas the FTIR spectra indicated the presence of certain functional groups in the PPy. The obtained PPy with high conductivity can be a promising conducting material with various applications, such as in supercapacitors, sensors, and other smart electronic devices.

8.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36014721

RESUMEN

Electrochemical energy storage devices are ubiquitous for personal electronics, electric vehicles, smart grids, and future clean energy demand. SCs are EES devices with excellent power density and superior cycling ability. Herein, we focused on the fabrication and DFT calculations of Na3-δ-MnO2 nanocomposite, which has layered MnO2 redox-active sites, supported on carbon cloth. MnO2 has two-dimensional diffusion channels and is not labile to structural changes during intercalation; therefore, it is considered the best substrate for intercalation. Cation pre-intercalation has proven to be an effective way of increasing inter-layered spacing, optimizing the crystal structure, and improving the relevant electrochemical behavior of asymmetric aqueous supercapacitors. We successfully established Na+ pre-intercalated δ-MnO2 nanosheets on carbon cloth via one-pot hydrothermal synthesis. As a cathode, our prepared material exhibited an extended potential window of 0-1.4 V with a remarkable specific capacitance of 546 F g-1(300 F g-1 at 50 A g-1). Moreover, when this cathode was accompanied by an N-AC anode in an asymmetric aqueous supercapacitor, it illustrated exceptional performance (64 Wh kg-1 at a power density of 1225 W kg-1) and incomparable potential window of 2.4 V and 83% capacitance retention over 10,000 cycles with a great Columbic efficiency.

9.
Front Chem ; 10: 1110240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36688043

RESUMEN

A new type of chirality, orientational chirality, consisting of a tetrahedron center and a remotely anchored blocker, has been discovered. The key structural element of this chirality is characterized by multiple orientations directed by a through-space functional group. The multi-step synthesis of orientational chiral targets was conducted by taking advantage of asymmetric nucleophilic addition, Suzuki-Miyaura cross-coupling and Sonogashira coupling. An unprecedented catalytic species showing a five-membered ring consisting of C (sp2)-Br-Pd-C (sp2) bonds was isolated during performing Suzuki-Miyaura cross-coupling. X-ray diffraction analysis confirmed the species structure and absolute configuration of chiral orientation products. Based on X-ray structures, a model was proposed for the new chirality phenomenon to differentiate the present molecular framework from previous others. DFT computational study presented the relative stability of individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry branch and to have a broad impact on chemical, biomedical, and material sciences in the future.

10.
Research (Wash D C) ; 2022: 0012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39290963

RESUMEN

Orientational chirality was discovered and characterized by a C(sp)-C(sp3) axis-anchored chiral center and a remotely anchored blocker. X-ray structural analysis proved that orientatiomers are stabilized by through-space functional groups, making it possible for 1 R- or S-chiral center to exhibit 3 orientational isomers simply by rotating operations. A new model system was proposed, fundamentally different from the traditional Felkin-Ahn-type or Cram-type models. In these traditional models, chiral C(sp3) center and blocking C(sp2) carbons are connected adjacently, and there exist 6 energy barriers during rotating along the C(sp2)-C(sp3) axis. In comparison, the present orientational chirality model shows that a chiral C(sp)-C(sp3) carbon is remotely located from a blocking group. Thus, it is focused on the steric dialog between a chiral C(sp3) center and a remotely anchored functional group. There exist 3 energy barriers for either (R)- or (S)-C(sp)-C(sp3) stereogenicity in the new model. Chiral amide auxiliary was proven to be an excellent chiral auxiliary in controlling rotations of orientatiomers to give complete stereoselectivity. The asymmetric synthesis of individual orientatiomers was conducted via multistep synthesis by taking advantage of the Suzuki-Miyaura cross-coupling and Sonogashira coupling reactions. Density functional theory computational study presented optimized conformers and relative energies for individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry topic and have a broad impact on chemical, biomedical, and material sciences in the future.

11.
Front Chem ; 9: 742399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568286

RESUMEN

Chemical synthesis based on Group-Assisted Purification chemistry (GAP) has been prolifically used as a powerful, greener and ecofriendly tool so far. Herein, we report hypervalent iodine (III) mediated regio- and diastereoselective aminobromination of electron-deficient olefins using group-assisted purification (GAP) method. By simply mixing the GAP auxiliary-anchored substrates with TsNH2-NBS as nitrogen/bromine sources and PhI(OAc)2 as a catalyst, a series of vicinal bromoamines with multifunctionalities were obtained in moderate to excellent yields (53-94%). The vicinal bromoamines were obtained without column chromatography and/or recrystallization simply by washing the crude mixtures with cosolvents and thus avoiding wastage of silica, solvents, time, and labor. The GAP auxiliary is recyclable and reusable.

12.
Front Chem ; 8: 523, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733847

RESUMEN

Herein, we report a protocol for highly efficient hypervalent iodine (III) mediated, group-assisted purification (GAP) method for the regioselectivities and stereoselective aminochlorination of electron-deficient olefins. A series of vicinal chloramines with multifunctionalities were acquired in moderate to excellent yields (45-94%), by merely mixing the GAP auxiliary-anchored substrates with dichloramine T and tosylamide as chlorine/nitrogen sources and iodobenzene diacetate as a catalyst. The vicinal chloramines were obtained without any column chromatographic purification and recrystallization simply by washing the reaction mixture with a minimum amount of common inexpensive solvents and thus avoiding wastage of silica, solvents, time, and labor. The GAP auxiliary is recyclable and reusable. This strategy is easy to handle, cost-effective, greener, sustainable, environmentally benign, and mostly suitable for the syntheses of vicinal haloamines from various electron-deficient alkenes.

13.
J Org Chem ; 85(2): 360-366, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31645097

RESUMEN

A new Rh(III)-catalyzed [3 + 3] annulation reaction between cyclopropenones and ß-ketosulfoxonium ylides has been reported, enabling metal carbene insertion to access a wide range of trisubstituted 2-pyrones with moderate to excellent yields via C-C single-bond cleavage, in which sulfoxonium ylides serve as potential safe precursors of metal carbenes. This reaction occurred under redox-neutral conditions with a broad substrate scope.

14.
Natl Sci Rev ; 7(3): 588-599, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34692078

RESUMEN

The first enantioselective assembly of sandwich-shaped organo molecules has been achieved by conducting dual asymmetric Suzuki-Miyaura couplings and nine other reactions. This work also presents the first fully C-C anchored multi-layer 3D chirality with optically pure enantiomers. As confirmed by X-ray diffraction analysis that this chiral framework is featured by a unique C2 -symmetry in which a nearly parallel fashion consisting of three layers: top, middle and bottom aromatic rings. Unlike the documented planar or axial chirality, the present chirality shows its top and bottom layers restrict each other from free rotation, i.e., this multi-layer 3D chirality would not exist if either top or bottom layer is removed. Nearly all multi-layered compounds showed strong luminescence of different colors under UV irradiation, and several randomly selected samples displayed aggregation-induced emission (AIE) properties. This work is believed to have broad impacts on chemical, medicinal and material sciences including optoelectronic materials in future.

15.
Artículo en Inglés | MEDLINE | ID: mdl-31511800

RESUMEN

The multiwalled carbon nanotubes has a myriad of applications due to its unique electrical and mechanical properties. The biomedical application of multiwalled carbon nanotubes that have been reported include drug delivery, medical imaging, gene delivery, tissue regeneration, and diagnostics. Proper characterization is required to enhance the potential application of the multiwalled carbon nanotubes. Terahertz technology is a relatively unfamiliar spectrometric technique that show promise in efficiently characterizing multiwalled carbon nanotubes. In this paper, terahertz imaging was used to characterize multiwalled carbon nanotube in comparison with other characterization techniques, including transmission electron microscopy and field emission scanning electron microscopy. The average diameter of the carbon nanotubes from the reconstructed terahertz images was 48.54 nm, while the average length of a fiber was found to be approximately 1.2 µm. The multiwalled carbon nanotubes were additionally characterized by FTIR, Raman spectroscopy, and Energy-dispersive X-ray spectroscopy.

16.
Med Chem ; 15(2): 175-185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30207240

RESUMEN

BACKGROUND: Barbituric acid derivatives are a versatile group of compounds which are identified as potential pharmacophores for the treatment of anxiety, epilepsy and other psychiatric disorders. They are also used as anesthetics and have sound effects on the motor and sensory functions. Barbiturates are malonylurea derivatives with a variety of substituents at C-5 position showing resemblance with nitrogen and sulfur containing compounds like thiouracil which exhibited potent anticancer and antiviral activities. Recently, barbituric acid derivatives have also received great interest for applications in nanoscience. OBJECTIVE: Synthesis of 5-arylidene-N,N-diethylthiobarbiturates, biological evaluation as potential α-glucosidase inhibitors and molecular modeling. METHODS: In the present study, N,N-Diethylthiobarbituric acid derivatives were synthesized by refluxing of N,N-diethylthiobarbituric acid and different aromatic aldehydes in distilled water. In a typical reaction; a mixture of N,N-diethylthiobarbituric acid 0.20 g (1 mmol) and 5-bromo-2- hydroxybenzaldehyde 0.199 g (1 mmol) mixed in 10 mL distilled water and reflux for 30 minutes. After completion of the reaction, the corresponding product 1 was filtered and dried and yield calculated. It was crystallized from ethanol. The structures of synthesized compounds 1-25 were carried out by using 1H, 13C NMR, EI spectroscopy and CHN analysis used for the determination of their structures. The α-glucosidase inhibition assay was performed as given by Chapdelaine et al., with slight modifications and optimization. RESULTS: Our newly synthesized compounds showed a varying degree of α-glucosidase inhibition and at least four of them were found as potent inhibitors. Compounds 6, 5, 17, 11 exhibited IC50 values (Mean±SEM) of 0.0006 ± 0.0002, 18.91 ± 0.005, 19.18 ± 0.002, 36.91 ± 0.003 µM, respectively, as compared to standard acarbose (IC50, 38.25 ± 0.12 µM). CONCLUSION: Our present study has shown that compounds 6, 5, 17, 11 exhibited IC50 values of 0.0006 ± 0.0002, 18.91 ± 0.005, 19.18 ± 0.002, 36.91 ± 0.003 µM, respectively. The studies were supported by in silico data analysis.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , Tiobarbitúricos/síntesis química , Tiobarbitúricos/farmacología , alfa-Glucosidasas/metabolismo , Técnicas de Química Sintética , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Tiobarbitúricos/química , Tiobarbitúricos/metabolismo , alfa-Glucosidasas/química
17.
Nanoscale Horiz ; 2(3): 127-134, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260656

RESUMEN

Two critical nanoscale design parameters (CNDPs); namely, surface chemistry and interior compositions of poly(amidoamine) (PAMAM) dendrimers were systematically engineered to produce unique hyperpolarizable, electro-optical substrates. These electro-optically active dendritic films were demonstrated to produce high quality, continuous wave terahertz radiation when exposed to a suitable pump laser that could be used for spectrometry and molecular imaging. These dendrimer based dipole excitation (DDE) terahertz sources were used to construct a working spectrometer suitable for many practical applications including THz imaging and analysis of encapsulated hydrogen species in fullerenes.

18.
Sci Rep ; 6: 30140, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27443236

RESUMEN

The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

19.
Biosens Bioelectron ; 82: 64-70, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27040943

RESUMEN

Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin.


Asunto(s)
Carcinoma Basocelular/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Piel/diagnóstico por imagen , Imágen por Terahertz/métodos , Detección Precoz del Cáncer/instrumentación , Diseño de Equipo , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Imágen por Terahertz/instrumentación
20.
ISME J ; 9(1): 268-72, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25012901

RESUMEN

Dysbiotic oral bacterial communities have a critical role in the etiology and progression of periodontal diseases. The goal of this study was to investigate the extent to which smoking increases risk for disease by influencing the composition of the subgingival microbiome in states of clinical health. Subgingival plaque samples were collected from 200 systemically and periodontally healthy smokers and nonsmokers. 16S pyrotag sequencing was preformed generating 1,623,713 classifiable sequences, which were compared with a curated version of the Greengenes database using the quantitative insights into microbial ecology pipeline. The subgingival microbial profiles of smokers and never-smokers were different at all taxonomic levels, and principal coordinate analysis revealed distinct clustering of the microbial communities based on smoking status. Smokers demonstrated a highly diverse, pathogen-rich, commensal-poor, anaerobic microbiome that is more closely aligned with a disease-associated community in clinically healthy individuals, suggesting that it creates an at-risk-for-harm environment that is primed for a future ecological catastrophe.


Asunto(s)
Encía/microbiología , Gingivitis/microbiología , Bacterias Anaerobias Gramnegativas/aislamiento & purificación , Microbiota , Fumar , Placa Dental/microbiología , Femenino , Bacterias Anaerobias Gramnegativas/clasificación , Bacterias Anaerobias Gramnegativas/genética , Humanos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA