Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340860

RESUMEN

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Suelo , Cadmio/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminación Ambiental/análisis , Zinc/análisis , Manganeso/análisis , Níquel/análisis ,
2.
Biol Trace Elem Res ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755587

RESUMEN

The effects of human activities are becoming clearer every year, with multiple reports of struggling and eroded ecosystems resulting in new threats of plant and animal extinctions throughout the world. It has been speculated that roadside tea-growing soils impact on metal dynamics from soil to tea plants and subsequently to tea infusion which may be threatened by increasingly unpredictable and dangerous surroundings. Furthermore, heavy metals released from vehicles on the national highway (NH) could be a source of metal contamination in roadside tea soils and tea plants. This study was articulated to realize the effect of NH on a buildup of selected metals (Cu, Cd, Fe, Mn, Ni, and Zn) in made tea along with repeated tea infusion. In general, metal concentration was found significantly higher in made tea prepared from the young shoots collected from the vicinity of NH. The results also showed that distance from the NH and infusion process significantly influenced to content of the analysed metal in tea infusions. The mean average daily intake (ADI) and hazard quotient (HQ) values of analysed tea samples were found in the orderMn˃Fe˃Zn˃Cu˃Ni˃Cd and Mn˃Cu˃Zn˃Fe˃Ni˃Cd, respectively. The HQ values of all analysed metals were found << 1, indicating that ingestion of tea infusion with analysed heavy metals should not cause a danger to human health. However, this study further demonstrates the consumption of tea infusion prepared from made tea around the vicinity of NH may contribute to a significantly higher quantity of metal intake in the human body. From the hierarchical cluster analysis, it has been observed that there are three homogenous groups of analysed heavy metals.

3.
Front Plant Sci ; 13: 1017145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605950

RESUMEN

Harnessing the potential yields of evergreen perennial crops like tea (Camellia sinensis L.) essentially requires the application of optimum doses of nutrients based on the soil test reports. In the present study, the soil pH, organic carbon (OC), available potassium as K2O (AK), and available sulphur (AS) of 7300 soil samples from 115 tea estates spread over the Dooars ranging from 88°52'E to 89°86'E longitude and 26°45'N to 27°00'N latitude of West Bengal, India have been documented. About 54% of soil samples were found within the optimum range of soil pH (4.50-5.50) for tea cultivation. The overall range of OC was found from 0.28% to 6.00% of which, 94% of the analyzed samples were within the range of satisfactory to excellent level of OC i.e. (>0.80% to 6.00%). Around 36.3% of soil samples were found to have high AK (>100 mg kg-1) but 37.1% of soils were found to have high AS content (>40 mg kg-1). The nutrient index status of soil pH was low in Dam Dim, Chulsa, Nagrakata, Binnaguri, and Jainti sub-districts. Soils from five sub-districts had a high nutrient index (2.47 to 2.83) for soil organic carbon. However, it existed in the medium index (1.69 and 2.22) for Dalgaon and Kalchini sub-districts. Only Nagrakata sub-district soil samples were in the high nutrient index (2.65) for AK. All analyzed samples showed a medium nutrient index (1.97 to 2.27) for AS. The result indicated that soil pH was significantly negatively correlated with soil OC (-0.336) and AK (-0.174). However, the soil OC was significantly positive correlated with AK (0.258) and AS (0.100). It could be concluded that a balanced fertilizer application would be needed as a part of the soil improvement program through soil chemical tests for sustainable tea cultivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...