Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Cell Sci ; 134(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33408247

RESUMEN

The migration of circulating neutrophils towards damaged or infected tissue is absolutely critical to the inflammatory response. L-selectin is a cell adhesion molecule abundantly expressed on circulating neutrophils. For over two decades, neutrophil L-selectin has been assigned the exclusive role of supporting tethering and rolling - the initial stages of the multi-step adhesion cascade. Here, we provide direct evidence for L-selectin contributing to neutrophil transendothelial migration (TEM). We show that L-selectin co-clusters with PECAM-1 - a well-characterised cell adhesion molecule involved in regulating neutrophil TEM. This co-clustering behaviour occurs specifically during TEM, which serves to augment ectodomain shedding of L-selectin and expedite the time taken for TEM (TTT) to complete. Blocking PECAM-1 signalling (through mutation of its cytoplasmic tail), PECAM-1-dependent adhesion or L-selectin shedding, leads to a significant delay in the TTT. Finally, we show that co-clustering of L-selectin with PECAM-1 occurs specifically across TNF- but not IL-1ß-activated endothelial monolayers - implying unique adhesion interactomes forming in a cytokine-specific manner. To our knowledge, this is the first report to implicate a non-canonical role for L-selectin in regulating neutrophil TEM.


Asunto(s)
Movimiento Celular , Selectina L , Neutrófilos , Migración Transendotelial y Transepitelial , Adhesión Celular , Endotelio Vascular , Humanos , Selectina L/genética
3.
J Cell Sci ; 131(13)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29777033

RESUMEN

Leukocyte transendothelial migration (TEM) is absolutely fundamental to the inflammatory response, and involves initial pseudopod protrusion and subsequent polarised migration across inflamed endothelium. Ezrin/radixin/moesin (ERM) proteins are expressed in leukocytes and mediate cell shape changes and polarity. The spatio-temporal organisation of ERM proteins with their targets, and their individual contribution to protrusion during TEM, has never been explored. Here, we show that blocking binding of moesin to phosphatidylinositol 4,5-bisphosphate (PIP2) reduces its C-terminal phosphorylation during monocyte TEM, and that on-off cycling of ERM activity is essential for pseudopod protrusion into the subendothelial space. Reactivation of ERM proteins within transmigrated pseudopods re-establishes their binding to targets, such as L-selectin. Knockdown of ezrin, but not moesin, severely impaired the recruitment of monocytes to activated endothelial monolayers under flow, suggesting that this protein plays a unique role in the early recruitment process. Ezrin binds preferentially to L-selectin in resting cells and during early TEM. The moesin-L-selectin interaction increases within transmigrated pseudopods as TEM proceeds, facilitating localised L-selectin ectodomain shedding. In contrast, a non-cleavable L-selectin mutant binds selectively to ezrin, driving multi-pseudopodial extensions. Taken together, these results show that ezrin and moesin play mutually exclusive roles in modulating L-selectin signalling and shedding to control protrusion dynamics and polarity during monocyte TEM.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Endotelio/citología , Selectina L/metabolismo , Proteínas de Microfilamentos/metabolismo , Monocitos/citología , Monocitos/metabolismo , Línea Celular , Movimiento Celular , Proteínas del Citoesqueleto/genética , Endotelio/metabolismo , Humanos , Selectina L/genética , Proteínas de Microfilamentos/genética , Unión Proteica
4.
Methods Mol Biol ; 1591: 143-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28349480

RESUMEN

Inflammation is a complex process involving the contribution of leukocytes and blood vessels, which collectively aim to restore homeostasis following injury to the body. Leukocytes are essential front-line responders to infectious or noninfectious injury and can be deployed within minutes of sensing damage. A typical inflammatory response leads to the exit of circulating leukocytes into the surrounding extravascular space, which follows a series of increasingly adhesive events - collectively termed the "multistep adhesion cascade." The Ras homology (Rho) family of small GTPases (RhoGTPases) are intracellular proteins involved in translating extracellular signals into cellular behavior, such as adhesion and migration. This chapter focuses on how to prepare, perform, and monitor RhoGTPase activation assays using classic pull-down assays. Although this chapter focuses on RhoGTPase signaling downstream of L-selectin clustering, the methods outlined here can be applied to analyzing RhoGTPase activity in response to stimulating other surface receptors.


Asunto(s)
Leucocitos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Bioensayo/métodos , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Inflamación/metabolismo , Selectina L/metabolismo , Ratones , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...