Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(5): e2300602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052160

RESUMEN

Enhancing the piezoresistivity of polymer-derived silicon oxycarbide ceramics (SiOCPDC ) is of great interest in the advancement of highly sensitive pressure/load sensor technology for use in harsh and extreme working conditions. However, a facile, low cost, and scalable approach to fabricate highly piezoresistive SiOCPDC below 1400 °C still remains a great challenge. Here, the fabrication and enhancement of piezoresistive properties of SiOCPDC reinforced with ß-SiC nanopowders (SiCNP ) through masked stereolithography-based 3D-printing and subsequent pyrolysis at 1100 °C are demonstrated. The presence of free carbon in SiCNP augments high piezoresistivity in the fabricated SiCNP -SiOCPDC composites even at lower pyrolysis temperatures. A gauge factor (GF) in the range of 4385-5630 and 6129-8987 with 0.25 and 0.50 wt% of SiCNP , respectively is demonstrated, for an applied pressure range of 0.5-5 MPa at ambient working conditions. The reported GF is significantly higher compared to those of any existing SiOCPDC materials. This rapid and facile fabrication route with significantly enhanced piezoresistive properties makes the 3D-printed SiCNP -SiOCPDC composite a promising high-performance material for the detection of pressure/load in demanding applications. Also, the overall robustness in mechanical properties and load-bearing capability ensures its long-term stability and makes it suitable for challenging and severe environment applications.


Asunto(s)
Compuestos Inorgánicos de Carbono , Impresión Tridimensional , Compuestos de Silicona , Estereolitografía , Cerámica , Polímeros
2.
PLoS One ; 18(11): e0294253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972072

RESUMEN

BACKGROUND: According to the World Health Organization (WHO), dementia is the seventh leading reason of death among all illnesses and one of the leading causes of disability among the world's elderly people. Day by day the number of Alzheimer's patients is rising. Considering the increasing rate and the dangers, Alzheimer's disease should be diagnosed carefully. Machine learning is a potential technique for Alzheimer's diagnosis but general users do not trust machine learning models due to the black-box nature. Even, some of those models do not provide the best performance because of using only neuroimaging data. OBJECTIVE: To solve these issues, this paper proposes a novel explainable Alzheimer's disease prediction model using a multimodal dataset. This approach performs a data-level fusion using clinical data, MRI segmentation data, and psychological data. However, currently, there is very little understanding of multimodal five-class classification of Alzheimer's disease. METHOD: For predicting five class classifications, 9 most popular Machine Learning models are used. These models are Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), Gradient Boosting (GB), Adaptive Boosting (AdaB), Support Vector Machine (SVM), and Naive Bayes (NB). Among these models RF has scored the highest value. Besides for explainability, SHapley Additive exPlanation (SHAP) is used in this research work. RESULTS AND CONCLUSIONS: The performance evaluation demonstrates that the RF classifier has a 10-fold cross-validation accuracy of 98.81% for predicting Alzheimer's disease, cognitively normal, non-Alzheimer's dementia, uncertain dementia, and others. In addition, the study utilized Explainable Artificial Intelligence based on the SHAP model and analyzed the causes of prediction. To the best of our knowledge, we are the first to present this multimodal (Clinical, Psychological, and MRI segmentation data) five-class classification of Alzheimer's disease using Open Access Series of Imaging Studies (OASIS-3) dataset. Besides, a novel Alzheimer's patient management architecture is also proposed in this work.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Inteligencia Artificial , Teorema de Bayes , Análisis por Conglomerados , Conocimiento
3.
Sci Data ; 10(1): 701, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838726

RESUMEN

Oryza coarctata (2n = 4X = 48, KKLL) is an allotetraploid, undomesticated relative of rice and the only species in the genus Oryza with tolerance to high salinity and submergence. Therefore, it contains important stress and tolerance genes/factors for rice. The initial draft genome published was limited by data and technical restrictions, leading to an incomplete and highly fragmented assembly. This study reports a new, highly contiguous chromosome-level genome assembly and annotation of O. coarctata. PacBio high-quality HiFi reads generated 460 contigs with a total length of 573.4 Mb and an N50 of 23.1 Mb, which were assembled into scaffolds with Hi-C data, anchoring 96.99% of the assembly onto 24 chromosomes. The genome assembly comprises 45,571 genes, and repetitive content contributes 25.5% of the genome. This study provides the novel identification of the KK and LL genome types of the genus Oryza, leading to valuable insights into rice genome evolution. The chromosome-level genome assembly of O. coarctata is a valuable resource for rice research and molecular breeding.


Asunto(s)
Genoma de Planta , Oryza , Cromosomas , Oryza/genética , Filogenia , Salinidad
4.
Theor Appl Genet ; 136(1): 18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36680594

RESUMEN

To assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001-2002 to 2020-2021 in multi-locations trials. In such a series of trials, yield may increase over time due to (i) genetic improvement (genetic trend) and (ii) improved management or favorable climate change (agronomic/non-genetic trend). In both the winter and monsoon seasons, we observed positive genetic and non-genetic trends. The annual genetic trend for grain yield in both winter and monsoon rice varieties was 0.01 t ha-1, while the non-genetic trend for both seasons was 0.02 t ha-1, corresponding to yearly genetic gains of 0.28% and 0.18% in winter and monsoon seasons, respectively. The overall percentage yield change from 1970 until 2020 for winter rice was 40.96%, of which 13.91% was genetic trend and 27.05% was non-genetic. For the monsoon season, the overall percentage change from 1973 until 2020 was 38.39%, of which genetic and non-genetic increases were 8.36% and 30.03%, respectively. Overall, the contribution of non-genetic trend is larger than genetic trend both for winter and monsoon seasons. These results suggest that limited progress has been made in improving yield in Bangladeshi rice breeding programs over the last 50 years. Breeding programs need to be modernized to deliver sufficient genetic gains in the future to sustain Bangladeshi food security.


Asunto(s)
Oryza , Oryza/genética , Bangladesh , Fitomejoramiento , Grano Comestible/genética , Agricultura , Estaciones del Año
5.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501973

RESUMEN

Smart cities can be complemented by fusing various components and incorporating recent emerging technologies. IoT communications are crucial to smart city operations, which are designed to support the concept of a "Smart City" by utilising the most cutting-edge communication technologies to enhance city administration and resident services. Smart cities have been outfitted with numerous IoT-based gadgets; the Internet of Things is a modular method to integrate various sensors with all ICT technologies. This paper provides an overview of smart cities' concepts, characteristics, and applications. We thoroughly investigate smart city applications, challenges, and possibilities with solutions in recent technological trends and perspectives, such as machine learning and blockchain. We discuss cloud and fog IoT ecosystems in the in capacity of IoT devices, architectures, and machine learning approaches. In addition we integrate security and privacy aspects, including blockchain applications, towards more trustworthy and resilient smart cities. We also highlight the concepts, characteristics, and applications of smart cities and provide a conceptual model of the smart city mega-events framework. Finally, we outline the impact of recent emerging technologies' implications on challenges, applications, and solutions for futuristic smart cities.


Asunto(s)
Cadena de Bloques , Ecosistema , Ciudades , Comunicación , Tecnología de la Información
6.
Sci Rep ; 12(1): 17306, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243755

RESUMEN

Salinity has a significant negative impact on production of rice. To cope with the increased soil salinity due to climate change, we need to develop salt tolerant rice varieties that can maintain their high yield. Rice landraces indigenous to coastal Bangladesh can be a great resource to study the genetic basis of salt adaptation. In this study, we implemented a QTL analysis framework with a reciprocal mapping population developed from a salt tolerant landrace Horkuch and a high yielding rice variety IR29. Our aim was to detect genetic loci that contributes to the salt adaptive responses of the two different developmental stages of rice which are very sensitive to salinity stress. We identified 14 QTLs for 9 traits and found that most are unique to specific developmental stages. In addition, we detected a significant effect of the cytoplasmic genome on the QTL model for some traits such as leaf total potassium and filled grain weight. This underscores the importance of considering cytoplasm-nuclear interaction for breeding programs. Finally, we identified QTLs co-localization for multiple traits that highlights the possible constraint of multiple QTL selection for breeding programs due to different contributions of a donor allele for different traits.


Asunto(s)
Oryza , Tolerancia a la Sal , Oryza/genética , Fitomejoramiento , Potasio , Tolerancia a la Sal/genética , Plantones/genética , Suelo
7.
Sensors (Basel) ; 22(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35746313

RESUMEN

Social media platforms have many users who share their thoughts and use these platforms to organize various events collectively. However, different upsetting incidents have occurred in recent years by taking advantage of social media, raising significant concerns. Therefore, considerable research has been carried out to detect any disturbing event and take appropriate measures. This review paper presents a thorough survey to acquire in-depth knowledge about the current research in this field and provide a guideline for future research. We systematically review 67 articles on event detection by sensing social media data from the last decade. We summarize their event detection techniques, tools, technologies, datasets, performance metrics, etc. The reviewed papers mainly address the detection of events, such as natural disasters, traffic, sports, real-time events, and some others. As these detected events can quickly provide an overview of the overall condition of the society, they can significantly help in scrutinizing events disrupting social security. We found that compatibility with different languages, spelling, and dialects is one of the vital challenges the event detection algorithms face. On the other hand, the event detection algorithms need to be robust to process different media, such as texts, images, videos, and locations. We outline that the event detection techniques compatible with heterogeneous data, language, and the platform are still missing. Moreover, the event and its location with a 24 × 7 real-time detection system will bolster the overall event detection performance.


Asunto(s)
Desastres Naturales , Medios de Comunicación Sociales , Algoritmos , Humanos
8.
Animals (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828038

RESUMEN

The objective of the experiment was to investigate the effects of dietary supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) on the nitrogen (N) metabolism in beef steers. The plasma metabolites analyzed by metabolome profiling were used to clarify the impact mechanism. Three Simmental steers (body weight, 593 ± 23 kg) were used as experimental animals. Three levels of HMBi (i.e., 0, 12, and 24 g d-1) were added in a basal ration as experimental treatments. The steers and the dietary treatments were randomly allocated in a 3 × 3 Latin square design. The results showed that supplementing HMBi up to 24 g d-1 did not affect the N retention and N retention rate (NRR), and the fecal N/urinary N ratio even though it tended to linearly increase the uric acid N/urinary N ratio in steers. The results of plasma metabolome profiling showed that supplementing HMBi at 24 g d-1 upregulated the plasma concentrations of L-methionine (Met); Met-related metabolites including betaine, Met sulfoxide, and taurine; and L-isoleucine and tyrosine, whereas it downregulated L-serine, glycine, diaminopimelic acid, and other metabolites. The reason for the nonsignificant effect of HMBi on improving the N utilization in steers could be that the steers used in the experiment were in the fattening period. It is suggested to evaluate the effects of the dietary addition of HMBi using growing cattle in further research.

9.
Biomed Eng Lett ; 11(4): 335-365, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34513114

RESUMEN

Humans have suffered from a variety of infectious diseases since a long time ago, and now a new infectious disease called COVID-19 is prevalent worldwide. The ongoing COVID-19 pandemic has led to research of the effective methods of diagnosing respiratory infectious diseases, which are important to reduce infection rate and help the spread of diseases be controlled. The onset of COVID-19 has led to the further development of existing diagnostic methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, and loop-mediated isothermal amplification. Furthermore, this has contributed to the further development of micro/nanotechnology-based diagnostic methods, which have advantages of high-throughput testing, effectiveness in terms of cost and space, and portability compared to conventional diagnosis methods. Micro/nanotechnology-based diagnostic methods can be largely classified into (1) nanomaterials-based, (2) micromaterials-based, and (3) micro/nanodevice-based. This review paper describes how micro/nanotechnologies have been exploited to diagnose respiratory infectious diseases in each section. The research and development of micro/nanotechnology-based diagnostics should be further explored and advanced as new infectious diseases continue to emerge. Only a handful of micro/nanotechnology-based diagnostic methods has been commercialized so far and there still are opportunities to explore.

10.
Biosensors (Basel) ; 11(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205927

RESUMEN

The use of deoxyribonucleic acid (DNA) hybridization to detect disease-related gene expression is a valuable diagnostic tool. An ion-sensitive field-effect transistor (ISFET) with a graphene layer has been utilized for detecting DNA hybridization. Silicene is a two-dimensional silicon allotrope with structural properties similar to graphene. Thus, it has recently experienced intensive scientific research interest due to its unique electrical, mechanical, and sensing characteristics. In this paper, we proposed an ISFET structure with silicene and electrolyte layers for the label-free detection of DNA hybridization. When DNA hybridization occurs, it changes the ion concentration in the surface layer of the silicene and the pH level of the electrolyte solution. The process also changes the quantum capacitance of the silicene layer and the electrical properties of the ISFET device. The quantum capacitance and the corresponding resonant frequency readout of the silicene and graphene are compared. The performance evaluation found that the changes in quantum capacitance, resonant frequency, and tuning ratio indicate that the sensitivity of silicene is much more effective than graphene.


Asunto(s)
Sondas de ADN , Técnicas Biosensibles , Simulación por Computador , ADN/química , Capacidad Eléctrica , Grafito/química , Silicio/química , Transistores Electrónicos
11.
J Sci Food Agric ; 100(4): 1797-1805, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31849061

RESUMEN

BACKGROUND: Two consecutive trials were carried out to study the effects of dietary supplementation of rumen-protected methionine (RPM) on nutrient digestibility, nitrogen (N) metabolism (Trial 1), and consequently the nitrous oxide (N2 O) emissions from urine in beef cattle (Trial 2). Eight 24-month-old castrated Simmental bulls with liveweights of 494 ± 28 kg, and four levels of dietary supplementation of RPM at 0, 10, 20, and 30 g head-1 d-1 , were allocated in a replicated 4 × 4 Latin square for Trial 1 and the N2 O emissions from the urine samples collected in Trial 1 were measured using a static incubation technique in Trial 2. RESULTS: Supplementation of RPM at 0, 10, 20, and 30 g head-1 d-1 to a basal ration deficient in methionine (Met) did not affect the apparent digestibility of dry matter, organic matter, neutral detergent fiber, or acid detergent fiber (P > 0.05), but decreased the urinary excretions of total N (P < 0.05) and urea (P < 0.001), increased the ratio of N retention / digested N (P < 0.05) in beef cattle, and decreased the estimated cattle urine N2 O-N emissions by 19.5%, 23.4%, and 32.6%, respectively (P < 0.001). CONCLUSION: Supplementation of RPM to Met-deficient rations was effective in improving the utilization rate of dietary N and decreasing the N2 O emissions from urine in beef cattle. © 2019 Society of Chemical Industry.


Asunto(s)
Bovinos/metabolismo , Metionina/metabolismo , Nitrógeno/orina , Óxido Nitroso/orina , Rumen/metabolismo , Urea/orina , Orina/química , Alimentación Animal/análisis , Animales , Bovinos/orina , Suplementos Dietéticos/análisis
12.
Front Plant Sci ; 8: 1818, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163563

RESUMEN

The rate of stigma exsertion (SE) is an important trait in rice breeding because the efficiency of hybrid rice seed production can be improved by increasing the percentage of stigmas that exsert. In this study, we developed a near isogenic line (NIL) from two parents, XieqingzaoB (XQZB) and Zhonghoi9308 (ZH9308), which have high and low SE rates in that order. In our previous study, we employed 75 chromosome segment substitution lines (CSSLs) and analyzed quantitative trait loci (QTLs) for their influence on SE rate. The single gene QTL (qSE11), which is located on chromosome 11, was responsible for this trait. In this study, we focused on one of the CSSLs (C65), namely, the NIL (qSE11XB). It contains an introgression segment of XQZB in the genetic background of ZH9308, and exhibits a significantly higher SE rate than that of the parents. We demonstrated that qSE11 regulated both the single and the dual SE rates. They both contribute to the total SE rate. Genetic analysis revealed that qSE11 acted as a single Mendelian factor and that the allele from XQZB increased the SE rate. The validity of our conclusions was established when C65 was used to develop secondary F2 (BC5F2) and F2:3 (BC5F2:3) populations by backcrossing to ZH9308, with subsequent selfing. We entered 3600 plants from the F2 population and 3200 from the F2:3 populations into a genetic dissection program and dissected the major QTL qSE11 to a 350.7-kb region located on chromosome 11. This study will contribute to the future isolation of candidate genes of SE and will play a vital role in future hybrid rice seed production programs.

13.
Sci Rep ; 7: 46138, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397857

RESUMEN

Global increase in salinity levels has made it imperative to identify novel sources of genetic variation for tolerance traits, especially in rice. The rice landrace Horkuch, endemic to the saline coastal area of Bangladesh, was used in this study as the source of tolerance in reciprocal crosses with the sensitive but high-yielding IR29 variety for discovering transcriptional variation associated with salt tolerance in the resulting populations. The cytoplasmic effect of the Horkuch background in leaves under stress showed functional enrichment for signal transduction, DNA-dependent regulation and transport activities. In roots the enrichment was for cell wall organization and macromolecule biosynthesis. In contrast, the cytoplasmic effect of IR29 showed upregulation of apoptosis and downregulation of phosphorylation across tissues relative to Horkuch. Differential gene expression in leaves of the sensitive population showed downregulation of GO processes like photosynthesis, ATP biosynthesis and ion transport. Roots of the tolerant plants conversely showed upregulation of GO terms like G-protein coupled receptor pathway, membrane potential and cation transport. Furthermore, genes involved in regulating membrane potentials were constitutively expressed only in the roots of tolerant individuals. Overall our work has developed genetic resources and elucidated the likely mechanisms associated with the tolerance response of the Horkuch genotype.


Asunto(s)
Oryza/genética , Oryza/fisiología , Salinidad , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Transcripción Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Motivos de Nucleótidos/genética , Fenotipo , Hojas de la Planta/genética , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/genética , Análisis de Secuencia de ARN
14.
Int J Genomics ; 2014: 210328, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25301195

RESUMEN

Bangladesh is a reservoir of diverse rice germplasm and is home to many landraces with unique, important traits. Molecular characterization of these landraces is of value for their identification, preservation, and potential use in breeding programs. Thirty-eight rice landraces from different regions of Bangladesh including some high yielding BRRI varieties were analyzed by 34 polymorphic microsatellite markers yielding a total of 258 reproducible alleles. The analysis could locate 34 unique identifiers for 21 genotypes, making the latter potentially amenable to identity verification. An identity map for these genotypes was constructed with all the 12 chromosomes of the rice genome. Polymorphism information content (PIC) scores of the 34 SSR markers were 0.098 to 0.89 where on average 7.5 alleles were observed. A dendogram constructed using UPGMA clustered the varieties into two major groups and five subgroups. In some cases, the clustering matched with properties like aromaticity, stickiness, salt tolerance, and photoperiod insensitivity. The results will help breeders to work towards the proper utilization of these landraces for parental selection and linkage map construction for discovery of useful alleles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...