Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 28(2): 155-69, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26267533

RESUMEN

Metastasis is the major cause of breast cancer mortality. Phosphoinositide 3-kinase (PI3K) generated PtdIns(3,4,5)P3 activates AKT, which promotes breast cancer cell proliferation and regulates migration. To date, none of the inositol polyphosphate 5-phosphatases that inhibit PI3K/AKT signaling have been reported as tumor suppressors in breast cancer. Here, we show depletion of the inositol polyphosphate 5-phosphatase PIPP (INPP5J) increases breast cancer cell transformation, but reduces cell migration and invasion. Pipp ablation accelerates oncogene-driven breast cancer tumor growth in vivo, but paradoxically reduces metastasis by regulating AKT1-dependent tumor cell migration. PIPP mRNA expression is reduced in human ER-negative breast cancers associated with reduced long-term outcome. Collectively, our findings identify PIPP as a suppressor of oncogenic PI3K/AKT signaling in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Inositol Polifosfato 5-Fosfatasas , Estimación de Kaplan-Meier , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
J Biol Chem ; 286(34): 29758-70, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21712384

RESUMEN

Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Fibras de Estrés/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Seudópodos/genética , Seudópodos/metabolismo , Fibras de Estrés/genética
3.
J Cell Sci ; 123(Pt 18): 3071-83, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20736309

RESUMEN

Phosphatidylinositol 3-phosphate [PtdIns(3)P] regulates endocytic trafficking and the sorting of receptors through early endosomes, including the rapid recycling of transferrin (Tfn). However, the phosphoinositide phosphatase that selectively opposes this function is unknown. The myotubularins are a family of eight catalytically active and six inactive enzymes that hydrolyse PtdIns(3)P to form PtdIns. However, the role each myotubularin family member plays in regulating endosomal PtdIns(3)P and thereby endocytic trafficking is not well established. Here, we identify the myotubularin family member MTMR4, which localizes to early endosomes and also to Rab11- and Sec15-positive recycling endosomes. In cells with MTMR4 knockdown, or following expression of the catalytically inactive MTMR4, MTMR4(C407A), the number of PtdIns(3)P-decorated endosomes significantly increased. MTMR4 overexpression delayed the exit of Tfn from early endosomes and its recycling to the plasma membrane. By contrast, expression of MTMR4(C407A), which acts as a dominant-negative construct, significantly accelerated Tfn recycling. However, in MTMR4 knockdown cells Tfn recycling was unchanged, suggesting that other MTMs might also contribute to recycling. MTMR4 regulated the subcellular distribution of Rab11 and, in cells with RNAi-mediated knockdown of MTMR4, Rab11 was directed away from the pericentriolar recycling compartment. The subcellular distribution of VAMP3, a v-SNARE protein that resides in recycling endosomes and endosome-derived transport vesicles, was also regulated by MTMR4. Therefore, MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway.


Asunto(s)
Endosomas/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Transporte Biológico , Células COS , Línea Celular , Chlorocebus aethiops , Endosomas/genética , Endosomas/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/genética
4.
Biochem J ; 419(1): 29-49, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19272022

RESUMEN

Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.


Asunto(s)
Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Inositol Polifosfato 5-Fosfatasas , Neoplasias/genética , Neoplasias/metabolismo , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología
5.
IUBMB Life ; 58(8): 451-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16916781

RESUMEN

Phosphoinositide signaling molecules control cellular growth, proliferation and differentiation, intracellular vesicle trafficking, and cytoskeletal rearrangement. The inositol polyphosphate 5-phosphatase family remove the D-5 position phosphate from PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,5)P2 forming PtdIns(3,4)P2, PtdIns(4)P and PtdIns(3)P respectively. This enzyme family, comprising ten mammalian members, exhibit seemingly non-redundant functions including the regulation of synaptic vesicle recycling, hematopoietic cell function and insulin signaling. Here we highlight recently established insights into the functions of two well characterized 5-phosphatases OCRL and SHIP2, which have been the subject of extensive functional studies, and the characterization of recently identified members, SKIP and PIPP, in order to highlight the diverse and complex functions of this enzyme family.


Asunto(s)
Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , Animales , Humanos , Inositol Polifosfato 5-Fosfatasas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimología , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA