Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sleep Health ; 10(1S): S34-S40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748973

RESUMEN

OBJECTIVE: To examine effects of menstrual phase and nighttime light exposure on subjective sleepiness and auditory Psychomotor Vigilance Task performance. METHODS: Twenty-nine premenopausal women (12 =Follicular; 17 =Luteal) completed a 6.5-hour nighttime monochromatic light exposure with varying wavelengths (420-620 nm) and irradiances (1.03-14.12 µW/cm2). Subjective sleepiness, reaction time, and attentional lapses were compared between menstrual phases in women with minimal (<33%) or substantial (≥33%) light-induced melatonin suppression. RESULTS: When melatonin was not suppressed, women in the follicular phase had significantly worse reaction time (mean difference=145.1 ms, 95% CI 51.8-238.3, p < .001, Cohen's D=1.9) and lapses (mean difference=12.9 lapses, 95% CI 4.37-21.41, p < .001, Cohen's D=1.7) compared to women in the luteal phase. When melatonin was suppressed, women in the follicular phase had significantly better reaction time (mean difference=152.1 ms, 95% CI 43.88-260.3, p < .001, Cohen's D=1.7) and lapses (mean difference=12.3 lapses, 95% CI 1.14-25.6, p < .01, Cohen's D=1.6) compared to when melatonin was not suppressed, such that their performance was not different (p > .9) from women in the luteal phase. Subjective sleepiness did not differ by menstrual phase (mean difference=0.6, p > .08) or melatonin suppression (mean difference=0.2, p > .4). CONCLUSIONS: Nighttime light exposure sufficient to suppress melatonin can also mitigate neurobehavioral performance deficits associated with the follicular phase. Despite the relatively small sample size, these data suggest that nighttime light may be a valuable strategy to help reduce errors and accidents in female shift workers.

2.
Sleep Health ; 10(1S): S25-S33, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007304

RESUMEN

OBJECTIVES: Mathematical models of human neurobehavioral performance that include the effects of acute and chronic sleep restriction can be key tools in assessment and comparison of work schedules, allowing quantitative predictions of performance when empirical assessment is impractical. METHODS: Using such a model, we tested the hypothesis that resident physicians working an extended duration work roster, including 24-28 hours of continuous duty and up to 88 hours per week averaged over 4weeks, would have worse predicted performance than resident physicians working a rapidly cycling work roster intervention designed to reduce the duration of extended shifts. The performance metric used was attentional failures (ie, Psychomotor Vigilance Task lapses). Model input was 169 actual work and sleep schedules. Outcomes were predicted hours per week during work hours spent at moderate (equivalent to 16-20 hours of continuous wakefulness) or high (equivalent to ≥20 hours of continuous wakefulness) performance impairment. RESULTS: The model predicted that resident physicians working an extended duration work roster would spend significantly more time at moderate impairment (p = .02, effect size=0.2) than those working a rapidly cycling work roster; this difference was most pronounced during the circadian night (p < .001). On both schedules, performance was predicted to decline from weeks 1 + 2 to weeks 3 + 4 (p < .001), but the rate of decline was significantly greater on extended duration work roster (p < .01). Predicted performance impairment was inversely related to prior sleep duration (p < .001). CONCLUSIONS: These findings demonstrate the utility of a mathematical model to evaluate the predicted performance profile of schedules for resident physicians and others who experience chronic sleep restriction and circadian misalignment.

3.
Sleep ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555446

RESUMEN

The Circadia Study (Circadia) is a novel "direct-to-participant" research study investigating the genetics of circadian rhythm disorders of advanced and delayed sleep phase and non-24 hour rhythms. The goals of the Circadia Study are twofold: (i) to create an easy-to-use toolkit for at-home circadian phase assessment for patients with circadian rhythm disorders through the use of novel in-home based surveys, tests, and collection kits; and (ii) create a richly phenotyped patient resource for genetic studies that will lead to new genetic loci associated with circadian rhythm disorders revealing possible loci of interest to target in the development of therapeutics for circadian rhythm disorders. Through these goals, we aim to broaden our understanding and elucidate the genetics of circadian rhythm disorders across a diverse patient population while increasing accessibility to circadian rhythm disorder diagnostics reducing health disparities through self-directed at-home dim light melatonin onset (DLMO) collections.

4.
medRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398260

RESUMEN

Study Objectives: To test the feasibility of a novel at-home salivary Dim Light Melatonin Onset (DLMO) assessment protocol to measure the endogenous circadian phase of 10 individuals ( 1 Advanced Sleep-Wake Phase Disorder patient (ASWPD), 4 Delayed Sleep-Wake Phase Disorder patients (DSWPD), and 5 controls). Methods: The study involved 10 participants (sex at birth: females = 9; male= 1), who ranged between 27 to 63 years old, with an average age of 38 years old. Our study population consisted of 7 individuals who identified as white and 3 who identified as Asian. Our participants were diverse in gender identity (woman = 7, male = 1, transgender = 1, nonbinary = 1, none = 1).The study tracked the sleep and activity patterns of 10 individuals over a 5-6 week period using self-reported online sleep diaries and objective actigraphy data. Participants completed two self-directed DLMO assessments, approximately one week apart, adhering to objective compliance measures. Participants completed the study entirely remotely: they completed all sleep diaries and other evaluations online and were mailed a kit with all materials needed to perform the actigraphy and at-home sample collections. Results: Salivary DLMO times were calculated for 8/10 participants using the Hockeystick method. DLMO times were on average 3 hours and 18 minutes earlier than self-reported sleep onset times (DSPD: 12:04 AM, controls: 9:55 PM.) Among the 6 participants for whom we calculated two separate DLMO times, DLMOs 1 and 2 were 96% correlated (p<0.0005.). Conclusions: Our results indicate that self-directed, at-home DLMO assessments are feasible and accurate. The current protocol may serve as a framework to reliably assess circadian phase in both clinical and general populations.

5.
Commun Biol ; 6(1): 756, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474677

RESUMEN

Aging alters the amplitude and phase of centrally regulated circadian rhythms. Here we evaluate whether peripheral circadian rhythmicity in the plasma lipidome is altered by aging through retrospective lipidomics analysis on plasma samples collected in 24 healthy individuals (9 females; mean ± SD age: 40.9 ± 18.2 years) including 12 younger (4 females, 23.5 ± 3.9 years) and 12 middle-aged older, (5 females, 58.3 ± 4.2 years) individuals every 3 h throughout a 27-h constant routine (CR) protocol, which allows separating evoked changes from endogenously generated oscillations in physiology. Cosinor regression shows circadian rhythmicity in 25% of lipids in both groups. On average, the older group has a ~14% lower amplitude and a ~2.1 h earlier acrophase of the lipid circadian rhythms (both, p ≤ 0.001). Additionally, more rhythmic circadian lipids have a significant linear component in addition to the sinusoidal across the 27-h CR in the older group (44/56) compared to the younger group (18/58, p < 0.0001). Results from individual-level data are consistent with group-average results. Results indicate that prevalence of endogenous circadian rhythms of the human plasma lipidome is preserved with healthy aging into middle-age, but significant changes in rhythmicity include a reduction in amplitude, earlier acrophase, and an altered temporal relationship between central and lipid rhythms.


Asunto(s)
Ritmo Circadiano , Lipidómica , Persona de Mediana Edad , Femenino , Humanos , Adulto Joven , Adulto , Estudios Retrospectivos , Ritmo Circadiano/fisiología , Envejecimiento , Lípidos
6.
J Clin Endocrinol Metab ; 108(11): e1347-e1357, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207451

RESUMEN

CONTEXT: Perturbations to the hypothalamic-pituitary-adrenal (HPA) axis have been hypothesized to increase postmenopausal cardiometabolic risk. Although sleep disturbance, a known risk factor for cardiometabolic disease, is prevalent during the menopause transition, it is unknown whether menopause-related sleep disturbance and estradiol decline disturb the HPA axis. OBJECTIVE: We examined the effect of experimental fragmentation of sleep and suppression of estradiol as a model of menopause on cortisol levels in healthy young women. METHODS: Twenty-two women completed a 5-night inpatient study during the mid-to-late follicular phase (estrogenized). A subset (n = 14) repeated the protocol after gonadotropin-releasing hormone agonist-induced estradiol suppression. Each inpatient study included 2 unfragmented sleep nights followed by 3 experimental sleep fragmentation nights. This study took place with premenopausal women at an academic medical center. Interventions included sleep fragmentation and pharmacological hypoestrogenism, and main outcome measures were serum bedtime cortisol levels and cortisol awakening response (CAR). RESULTS: Bedtime cortisol increased 27% (P = .03) and CAR decreased 57% (P = .01) following sleep fragmentation compared to unfragmented sleep. Polysomnographic-derived wake after sleep-onset (WASO) was positively associated with bedtime cortisol levels (P = .047) and negatively associated with CAR (P < .01). Bedtime cortisol levels were 22% lower in the hypoestrogenized state compared to the estrogenized state (P = .02), while CAR was similar in both estradiol conditions (P = .38). CONCLUSION: Estradiol suppression and modifiable menopause-related sleep fragmentation both independently perturb HPA axis activity. Sleep fragmentation, commonly seen in menopausal women, may disrupt the HPA axis, which in turn may lead to adverse health effects as women age.


Asunto(s)
Estradiol , Hidrocortisona , Humanos , Femenino , Privación de Sueño , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Menopausia , Sueño/fisiología , Saliva
7.
Sleep ; 46(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37026184

RESUMEN

STUDY OBJECTIVES: We examined the impact of adding a single-high-melanopic-illuminance task lamp in an otherwise low-melanopic-illuminance environment on alertness, neurobehavioral performance, learning, and mood during an 8-h simulated workday. METHODS: Sixteen healthy young adults [mean(±SD) age = 24.2 ± 2.9, 8F] participated in a 3-day inpatient study with two 8-h simulated workdays and were randomized to either ambient fluorescent room light (~30 melanopic EDI lux, 50 lux), or room light supplemented with a light emitting diode task lamp (~250 melanopic EDI lux, 210 lux) in a cross-over design. Alertness, mood, and cognitive performance were assessed throughout the light exposure and compared between conditions using linear mixed models. RESULTS: The primary outcome measure of percentage correct responses on the addition task was significantly improved relative to baseline in the supplemented condition (3.15% ± 1.18%), compared to the ambient conditions (0.93% ± 1.1%; FDR-adj q = 0.005). Additionally, reaction time and attentional failures on the psychomotor vigilance tasks were significantly improved with exposure to supplemented compared to ambient lighting (all, FDR-adj q ≤ 0.030). Furthermore, subjective measures of sleepiness, alertness, happiness, health, mood, and motivation were also significantly better in the supplemented, compared to ambient conditions (all, FDR-adj q ≤ 0.036). There was no difference in mood disturbance, affect, declarative memory, or motor learning between the conditions (all, FDR-adj q ≥ 0.308). CONCLUSIONS: Our results show that supplementing ambient lighting with a high-melanopic-illuminance task lamp can improve daytime alertness and cognition. Therefore, high-melanopic-illuminance task lighting may be effective when incorporated into existing suboptimal lighting environments. CLINICAL TRIALS: NCT04745312. Effect of Lighting Supplementation on Daytime Cognition. https://clinicaltrials.gov/ct2/show/NCT04745312.


Asunto(s)
Iluminación , Vigilia , Adulto Joven , Humanos , Cognición , Suplementos Dietéticos , Sueño
8.
Proc Natl Acad Sci U S A ; 119(51): e2205301119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508661

RESUMEN

Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.


Asunto(s)
Melatonina , Humanos , Ritmo Circadiano/fisiología , Opsinas de Bastones/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/fisiología , Factores de Tiempo
9.
J Pineal Res ; 73(4): e12826, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35996978

RESUMEN

Spaceflight exposes crewmembers to circadian misalignment and sleep loss, which impair cognition and increase the risk of errors and accidents. We compared the effects of an experimental dynamic lighting schedule (DLS) with a standard static lighting schedule (SLS) on circadian phase, self-reported sleep and cognition during a 45-day simulated space mission. Sixteen participants (mean age [±SD] 37.4 ± 6.7 years; 5 F; n = 8/lighting condition) were studied in four-person teams at the NASA Human Exploration Research Analog. Participants were scheduled to sleep 8 h/night on two weekend nights, 5 h/night on five weekday nights, repeated for six 7-day cycles, with scheduled waketime fixed at 7:00 a.m. Compared to the SLS where illuminance and spectrum remained constant during wake (~4000K), DLS increased the illuminance and short-wavelength (blue) content of white light (~6000K) approximately threefold in the main workspace (Level 1), until 3 h before bedtime when illuminance was reduced by ~96% and the blue content also reduced throughout (~4000K × 2 h, ~3000K × 1 h) until bedtime. The average (±SE) urinary 6-sulphatoxymelatonin (aMT6s) acrophase time was significantly later in the SLS (6.22 ± 0.34 h) compared to the DLS (4.76 ± 0.53 h) and more variable in SLS compared to DLS (37.2 ± 3.6 min vs. 28.2 ± 2.4 min, respectively, p = .04). Compared to DLS, self-reported sleep was more frequently misaligned relative to circadian phase in SLS RR: 6.75, 95% CI 1.55-29.36, p = .01), but neither self-reported sleep duration nor latency to sleep was different between lighting conditions. Accuracy in the abstract matching and matrix reasoning tests were significantly better in DLS compared to SLS (false discovery rate-adjusted p ≤ .04). Overall, DLS alleviated the drift in circadian phase typically observed in space analog studies and reduced the prevalence of self-reported sleep episodes occurring at an adverse circadian phase. Our results support incorporating DLS in future missions, which may facilitate appropriate circadian alignment and reduce the risk of sleep disruption.


Asunto(s)
Iluminación , Melatonina , Humanos , Adulto , Ritmo Circadiano , Autoinforme , Sueño , Luz
10.
J Am Med Dir Assoc ; 23(10): 1698-1704.e2, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850166

RESUMEN

OBJECTIVES: Falls in care home residents have major health and economic implications. Given the impact of lighting on visual acuity, alertness, and sleep and their potential influence on falls, we aimed to assess the impact of upgraded lighting on the rate of falls in long-term care home residents. DESIGN: An observational study of 2 pairs of care homes (4 sites total). One site from each pair was selected for solid-state lighting upgrade, and the other site served as a control. SETTING AND PARTICIPANTS: Two pairs of care homes with 758 residents (126,479 resident-days; mean age (±SD) 81.0 ± 11.7 years; 57% female; 31% with dementia). METHODS: One "experimental" site from each pair had solid-state lighting installed throughout the facility that changed in intensity and spectrum to increase short-wavelength (blue light) exposure during the day (6 am-6 pm) and decrease it overnight (6 pm-6 am). The control sites retained standard lighting with no change in intensity or spectrum throughout the day. The number of falls aggregated from medical records were assessed over an approximately 24-month interval. The primary comparison between the sites was the rate of falls per 1000 resident-days. RESULTS: Before the lighting upgrade, the rate of falls was similar between experimental and control sites [6.94 vs 6.62 falls per 1000 resident-days, respectively; rate ratio (RR) 1.05; 95% CI 0.70-1.58; P = .82]. Following the upgrade, falls were reduced by 43% at experimental sites compared with control sites (4.82 vs 8.44 falls per 1000 resident-days, respectively; RR 0.57; 95% CI 0.39-0.84; P = .004). CONCLUSIONS AND IMPLICATIONS: Upgrading ambient lighting to incorporate higher intensity blue-enriched white light during the daytime and lower intensity overnight represents an effective, passive, low-cost, low-burden addition to current preventive strategies to reduce fall risk in long-term care settings.


Asunto(s)
Iluminación , Sustancias Luminiscentes , Anciano , Anciano de 80 o más Años , Atención , Femenino , Humanos , Cuidados a Largo Plazo , Masculino , Sueño
11.
J Pineal Res ; 73(1): e12805, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35501292

RESUMEN

Circadian adaptation to shifted sleep/wake schedules may be facilitated by optimizing the timing, intensity and spectral characteristics of light exposure, which is the principal time cue for mammalian circadian pacemaker, and possibly by strategically timing nonphotic time cues such as exercise. Therefore, circadian phase resetting by light and exercise was assessed in 44 healthy participants (22 females, mean age [±SD] 36.2 ± 9.2 years), who completed 8-day inpatient experiments simulating night shiftwork, which included either an 8 h advance or 8 h delay in sleep/wake schedules. In the advance protocol (n = 18), schedules were shifted either gradually (1.6 h/day across 5 days) or abruptly (slam shift, 8 h in 1 day and maintained across 5 days). Both advance protocols included a dynamic lighting schedule (DLS) with 6.5 h exposure of blue-enriched white light (704 melanopic equivalent daylight illuminance [melEDI] lux) during the day and dimmer blue-depleted light (26 melEDI lux) for 2 h immediately before sleep on the shifted schedule. In the delay protocol (n = 26), schedules were only abruptly delayed but included four different lighting conditions: (1) 8 h continuous room-light control; (2) 8 h continuous blue-enriched light; (3) intermittent (7 × 15 min pulses/8 h) blue-enriched light; (4) 8 h continuous blue-enriched light plus moderate intensity exercise. In the room-light control, participants received dimmer white light for 30 min before bedtime, whereas in the other three delay protocols participants received dimmer blue-depleted light for 30 min before bedtime. Both the slam and gradual advance protocols induced similar shifts in circadian phase (3.28 h ± 0.37 vs. 2.88 h ± 0.31, respectively, p = .43) estimated by the change in the timing of timing of dim light melatonin onset. In the delay protocol, the continuous 8 h blue-enriched exposure induced significantly larger shifts than the room light control (-6.59 h ± 0.43 vs. -4.74 h ± 0.62, respectively, p = .02). The intermittent exposure induced ~60% of the shift (-3.90 h ± 0.62) compared with 8 h blue-enriched continuous light with only 25% of the exposure duration. The addition of exercise to the 8 h continuous blue-enriched light did not result in significantly larger phase shifts (-6.59 h ± 0.43 vs. -6.41 h ± 0.69, p = .80). Collectively, our results demonstrate that, when attempting to adapt to an 8 h overnight work shift, delay shifts are more successful, particularly when accompanied by a DLS with high-melanopic irradiance light stimulus during wake.


Asunto(s)
Ritmo Circadiano , Melatonina , Adaptación Fisiológica , Adulto , Femenino , Humanos , Iluminación , Persona de Mediana Edad , Sueño
12.
J Clin Endocrinol Metab ; 107(8): e3167-e3176, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35569055

RESUMEN

CONTEXT: Body fat gain associated with menopause has been attributed to estradiol (E2) withdrawal. Hypoestrogenism is unlikely to be the only contributing factor, however. OBJECTIVE: Given the links between sleep and metabolic health, we examined the effects of an experimental menopausal model of sleep fragmentation on energy metabolism. METHODS: Twenty premenopausal women (age 21-45 years) underwent a 5-night inpatient study during the mid-to-late follicular phase (estrogenized; n = 20) and the same protocol was repeated in a subset of the participants (n = 9) following leuprolide-induced E2 suppression (hypo-estrogenized). During each 5-night study, there were 2 nights of unfragmented sleep followed by 3 nights of fragmented sleep. Indirect calorimetry was used to assess fasted resting energy expenditure (REE) and substrate oxidation. RESULTS: Sleep fragmentation in the estrogenized state increased the respiratory exchange ratio (RER) and carbohydrate oxidation while decreasing fat oxidation (all P < 0.01). Similarly, in the hypo-estrogenized state without sleep fragmentation, RER and carbohydrate oxidation increased and fat oxidation decreased (all P < 0.01); addition of sleep fragmentation to the hypo-estrogenized state did not produce further effects beyond that observed for either intervention alone (P < 0.05). There were no effects of either sleep fragmentation or E2 state on REE. CONCLUSION: Sleep fragmentation and hypoestrogenism each independently alter fasting substrate oxidation in a manner that may contribute to body fat gain. These findings are important for understanding mechanisms underlying propensity to body fat gain in women across the menopause transition.


Asunto(s)
Estradiol , Privación de Sueño , Tejido Adiposo/metabolismo , Adulto , Calorimetría Indirecta , Carbohidratos , Metabolismo Energético , Estradiol/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Oxidación-Reducción , Sueño , Privación de Sueño/metabolismo , Adulto Joven
14.
J Pineal Res ; 72(3): e12791, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35133678

RESUMEN

The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.


Asunto(s)
Melatonina , Trastornos del Sueño del Ritmo Circadiano , Ritmo Circadiano/fisiología , Humanos , Melatonina/metabolismo , Sueño/fisiología , Tolerancia al Trabajo Programado/fisiología
15.
Nat Commun ; 13(1): 681, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115537

RESUMEN

While studies suggest that light and feeding patterns can reset circadian rhythms in various metabolites, whether these shifts follow a predictable pattern is unknown. We describe the first phase response curves (PRC) for lipids and hepatic proteins in response to combined light and food stimuli. The timing of plasma rhythms was assessed by constant routine before and after exposure to a combined 6.5-hour blue light exposure and standard meal schedule, which was systematically varied by ~20° between in0000dividuals. We find that the rhythms shift according to a PRC, with generally greater shifts for lipids and liver proteins than for melatonin. PRC timing varies relative to the stimulus, with albumin and triglyceride PRCs peaking at a time similar to melatonin whereas the cholesterol and high-density lipoprotein PRCs are offset by ~12 h. These data have important implications for treating circadian misalignment in shiftworkers who consume meals and are exposed to light around the clock.


Asunto(s)
Albúminas/metabolismo , Ritmo Circadiano/fisiología , Globulinas/metabolismo , Lípidos/sangre , Hígado/metabolismo , Proteoma/metabolismo , Adulto , Algoritmos , Colesterol/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Humanos , Masculino , Melatonina/sangre , Melatonina/metabolismo , Modelos Teóricos , Factores de Tiempo , Triglicéridos/sangre , Adulto Joven
16.
Sleep ; 45(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35022783

RESUMEN

STUDY OBJECTIVES: The neuropeptide orexin promotes wakefulness, modulates thermoregulation, increases after menopause, and is normalized in women receiving estrogen therapy, suggesting a role for orexin antagonism as a treatment for the vasomotor symptom (VMS)-associated insomnia disorder. We tested the efficacy of the dual orexin receptor antagonist suvorexant for chronic insomnia related to nighttime VMS. METHODS: In a double-blind, placebo-controlled trial, 56 women with chronic insomnia associated with nighttime VMS, Insomnia Severity Index (ISI) scores ≥15, and >30 min of diary-rated wake after sleep-onset (WASO) were randomized to receive oral suvorexant 10-20 mg (n = 27) or placebo (n = 29) nightly for 4 weeks. Analysis of within-person change in ISI was adjusted for baseline ISI and race. RESULTS: Mean baseline ISI scores were 18.1 (95% CI, 16.8 to 19.4) and 18.3 (95% CI, 17.2 to 19.5) in the suvorexant and placebo groups, respectively (p = .81). The average 4-week ISI within-person decrease from baseline was greater on suvorexant (-8.1 [95% CI, -10.2 to -6.0]) compared to placebo (-5.6 [95% CI, -7.4 to -3.9], p = .04). Compared to placebo, nighttime diary-rated VMS frequency was significantly reduced with suvorexant (p < .01). While diary-rated WASO and total sleep time trended toward improvement on suvorexant, findings were not significant after adjustment for multiple comparisons. Daytime VMS and other sleep-related outcomes did not differ between groups. Suvorexant was well tolerated. CONCLUSION: These results suggest that suvorexant is likely a well-tolerated and efficacious treatment for VMS-associated insomnia disorder and reduces nighttime VMS. Antagonism of orexin receptors could provide a novel therapeutic option for midlife women with VMS-associated chronic insomnia. CLINICAL TRIAL INFORMATION: Efficacy of Suvorexant in the Treatment of Hot Flash-associated Insomnia, https://clinicaltrials.gov/ct2/show/NCT03034018, ClinicalTrials.gov Identifier: NCT03034018.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Azepinas/farmacología , Azepinas/uso terapéutico , Método Doble Ciego , Femenino , Humanos , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Resultado del Tratamiento , Triazoles/farmacología , Triazoles/uso terapéutico
18.
J Pineal Res ; 71(2): e12752, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34118084

RESUMEN

Shiftwork and circadian disruption are associated with adverse metabolic effects. Therefore, we examined whether clinical biomarkers of metabolic health are under endogenous circadian regulation using a 40 hours constant routine protocol (CR; constant environmental and behavioral conditions) and evaluated the impact of typical daily conditions with periodic sleep and meals (baseline; 8 hours sleep at night, four meals during a 16 hour wake episode) on the phase and amplitude of these rhythms. Additionally, we tested whether these circadian rhythms are reset during simulated shiftwork. Under CR (n = 16 males, mean age ± SD = 23.4 ± 2.3 years), we found endogenous circadian rhythms in cholesterol, HDL and LDL, albumin and total protein, and VLDL and triglyceride. The rhythms were masked under baseline conditions except for cholesterol, which had near-identical phases under both conditions. Resetting of the cholesterol rhythm and Dim Light Melatonin Onset (DLMO) was then tested in a study of simulated shiftwork (n = 25, 14 females, 36.3 ± 8.9 years) across four protocols; two with abrupt 8 hour delay shifts and exposure to either blue-enriched or standard white light; and either an abrupt or gradual 8 hour advance (1.6 hours/day over 5 days) both with exposure to blue-enriched white light. In the delay protocols, the cholesterol rhythm shifted later by -3.7 hours and -4.2 hours, respectively, compared to -6.6 hours and -4.7 hours, for DLMO. There was a significant advance in cholesterol in the abrupt (+5.1 hours) but not the gradual (+2.1 hours) protocol, compared to +3.1 hours and +2.8 hours in DLMO, respectively. Exploratory group analysis comparing the phases of all metabolic biomarkers under both studies showed evidence of phase shifts due to simulated shiftwork. These results show that clinical biomarkers of metabolic health are under endogenous circadian regulation but that the expression of these rhythms is substantially influenced by environmental factors. These rhythms can also be reset, which has implications for understanding how both behavioral changes and circadian shifts due to shiftwork may disrupt metabolic function.


Asunto(s)
Melatonina , Trastornos del Sueño del Ritmo Circadiano , Biomarcadores , Ritmo Circadiano/fisiología , Femenino , Humanos , Luz , Masculino , Melatonina/metabolismo , Sueño/fisiología
19.
Biochem Pharmacol ; 191: 114504, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33711285

RESUMEN

Intermittent light (IML) pulses are more efficient per minute of exposure than continuous exposure in resetting the phase of the human circadian pacemaker. We assessed the spectral sensitivity in phase resetting, melatonin suppression and alertness induced by IML pulses. Twelve healthy young adults (6 females; mean age ± SD = 25.4 ± 3.6 years) were exposed to six monochromatic light pulses (2.8 × 1013 photons/cm2/s) over a 6.5 h window during the biological night. Six participants (3F) received 6 × 15-minute 460 nm (blue) pulses and six participants received 6 × 2-minute 555 nm (green) light pulses. Results were compared to historical data in 16 individuals who received continuous 460 nm (n = 8) or 555 nm (n = 8) light exposure using an identical protocol. As expected, long duration continuous 460 nm light exposure induced the largest total phase delay shifts, but intermittent 555 nm light induced the largest phase delay shifts per minute of the photic stimulus. Melatonin suppression was significantly higher under continuous light exposure compared to intermittent exposure patterns, and for 460 nm versus 555 nm exposure (under both light patterns). These data extend prior work showing a non-linear relationship between light exposure duration and phase resetting responses and illustrate the potential role of light wavelength, and therefore photoreceptor recruitment, in mediating these responses.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/antagonistas & inhibidores , Melatonina/sangre , Estimulación Luminosa/métodos , Vigilia/fisiología , Actigrafía/métodos , Adulto , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
20.
Front Neurol ; 12: 624217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692742

RESUMEN

We tested the effect of daytime indoor light exposure with varying melanopic strength on cognitive performance in college-aged students who maintained an enforced nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1 week immediately preceding the day of light exposure. Participants (n = 39; mean age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to one of four white light conditions of equal photopic illuminance (~50 lux at eye level in the vertical plane) but different melanopic illuminance [24-45 melanopic-EDI lux (melEDI)] generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K (high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed on the motor sequence learning task was 3.2 times faster (p < 0.05) during the daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective sleepiness was 1.5 times lower in the conventional high-melEDI condition compared to the conventional low-melEDI condition, but levels were similar between conventional low- and daylight-like high-melEDI conditions. These results demonstrate that exposure to high-melanopic (short wavelength-enriched) white light improves processing speed, working memory, and procedural learning on a motor sequence task in modestly sleep restricted young adults, and have important implications for optimizing lighting conditions in schools, colleges, and other built environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...