Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 326, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953287

RESUMEN

BACKGROUND: In regenerative medicine, especially skin tissue engineering, the focus is on enhancing the quality of wound healing. Also, several constructs with different regeneration potentials have been used for skin tissue engineering. In this study, the regenerative properties of chitosan-alginate composite hydrogels in skin wound healing under normoxic and hypoxic conditions were investigated in vitro. METHODS: The ionic gelation method was used to prepare chitosan/alginate (CA) hydrogel containing CA microparticles and bioactive agents [ascorbic acid (AA) and α-tocopherol (TP)]. After preparing composite hydrogels loaded with AA and TP, the physicochemical properties such as porosity, pore size, swelling, weight loss, wettability, drug release, and functional groups were analyzed. Also, the hemo-biocompatibility of composite hydrogels was evaluated by a hemolysis test. Then, the rat bone marrow mesenchymal stem cells (rMSCs) were seeded onto the hydrogels after characterization by flow cytometry. The survival rate was analyzed using MTT assay test. The hydrogels were also investigated by DAPI and H&E staining to monitor cell proliferation and viability. To induce hypoxia, the cells were exposed to CoCl2. To evaluate the regenerative potential of rMSCs cultured on CA/AA/TP hydrogels under hypoxic conditions, the expression of the main genes involved in the healing of skin wounds, including HIF-1α, VEGF-A, and TGF-ß1, was investigated by real-time PCR. RESULTS: The results demonstrated that the prepared composite hydrogels were highly porous, with interconnected pores that ranged in sizes from 20 to 188 µm. The evaluation of weight loss showed that the prepared hydrogels have the ability to biodegrade according to the goals of wound healing. The reduction percentage of CA/AA/TP mass in 21 days was reported as 21.09 ± 0.52%. Also, based on wettability and hemolysis tests of the CA/AA/TP, hydrophilicity (θ = 55.6° and 53.7°) and hemocompatibility with a hemolysis ratio of 1.36 ± 0.19 were evident for them. Besides, MTT assay, DAPI, and H&E staining also showed that the prepared hydrogels provide a suitable substrate for cell growth and proliferation. Finally, based on real-time PCR, increased expression levels of VEGF and TGF-ß1 were observed in rMSCs in hypoxic conditions cultured on the prepared hydrogels. CONCLUSIONS: In conclusion, this study provides evidence that 3D CA/AA/TP composite hydrogels seeded by rMSCs in hypoxic conditions have great potential to improve wound healing.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/farmacología , Quitosano/química , alfa-Tocoferol/farmacología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Alginatos/farmacología , Hemólisis , Cicatrización de Heridas , Hipoxia , Pérdida de Peso
2.
BMC Biotechnol ; 23(1): 21, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434201

RESUMEN

Gelatin methacrylate-based hydrogels (GelMA) were widely used in tissue engineering and regenerative medicine. However, to manipulate their various chemical and physical properties and create high-efficiency hydrogels, different materials have been used in their structure. Eggshell membrane (ESM) and propolis are two nature-derived materials that could be used to improve the various characteristics of hydrogels, especially structural and biological properties. Hence, the main purpose of this study is the development of a new type of GelMA hydrogel containing ESM and propolis, for use in regenerative medicine. In this regard, in this study, after synthesizing GelMA, the fragmented ESM fibers were added to it and the GM/EMF hydrogel was made using a photoinitiator and visible light irradiation. Finally, GM/EMF/P hydrogels were prepared by incubating GM/EMF hydrogels in the propolis solution for 24 h. After various structural, chemical, and biological characterizations, it was found that the hydrogels obtained in this study offer improved morphological, hydrophilic, thermal, mechanical, and biological properties. The developed GM/EMF/P hydrogel presented more porosity with smaller and interconnected pores compared to the other hydrogels. GM/EMF hydrogels due to possessing EMF showed compressive strength up to 25.95 ± 1.69 KPa, which is more than the compressive strength provided by GM hydrogels (24.550 ± 4.3 KPa). Also, GM/EMF/P hydrogel offered the best compressive strength (44.65 ± 3.48) due to the presence of both EMF and propolis. GM scaffold with a contact angle of about 65.41 ± 2.199 θ showed more hydrophobicity compared to GM/EMF (28.67 ± 1.58 θ), and GM/EMF/P (26.24 ± 0.73 θ) hydrogels. Also, the higher swelling percentage of GM/EMF/P hydrogels (343.197 ± 42.79) indicated the high capacity of this hydrogel to retain more water than other scaffolds. Regarding the biocompatibility of the fabricated structures, MTT assay results showed that GM/EMF/P hydrogel significantly (p-value < 0.05) supported cell viability. Based on the results, it seems that GM/EMF/P hydrogel could be a promising biomaterial candidate for use in various fields of regenerative medicine.


Asunto(s)
Ascomicetos , Própolis , Animales , Hidrogeles , Cáscara de Huevo , Materiales Biocompatibles
3.
Artículo en Inglés | MEDLINE | ID: mdl-36815236

RESUMEN

Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.


Asunto(s)
Nanocompuestos , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Nanotecnología/métodos , Medicina Regenerativa/métodos , Andamios del Tejido/química
4.
J Med Eng Technol ; 45(7): 511-531, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34251971

RESUMEN

Electrospinning is a method which produces various nanofiber scaffolds for different tissues was attractive for researchers. Nanofiber scaffolds could be made from several biomaterials and polymers. Quality and virtues of final scaffolds depend on used biomaterials (even about single substance, the origin is effective), additives (such as some molecules, ions, drugs, and inorganic materials), electrospinning parameter (voltage, injection speed, temperature, …), etc. In addition to its benefits, which makes it more attractive is the possibility of modifications. Common biomaterials in bone tissue engineering such as poly-caprolactone (PCL), hydroxyapatite (HAp), and their important features, electrospinning nanofibers were widely studied. Related investigations indicate the critical role of even small parameters (like the concentration of PCL or HAp) in final product properties. These changes also, cause deference in cell proliferation, adhesion, differentiation, and in vivo repair process. In this review was focussed on PCL/HAp based nanofibers and additives that researchers used for scaffold improvement. Then, reviewing properties of gained nanofibers, their effect on cell behaviour, and finally, their valency in bone tissue engineering studies (in vitro and in vivo).


Asunto(s)
Nanofibras , Regeneración Ósea , Durapatita , Poliésteres , Andamios del Tejido
5.
Artif Cells Nanomed Biotechnol ; 48(1): 1089-1104, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32856970

RESUMEN

Many traditional procedures, including surgical methods such as microfracture of subchondral bone and soft tissue transplantation, have been widely used to treat damaged cartilage. However, there is still no definitive cure for cartilage defects. In recent decades, tissue engineering has raised hopes for the repair of defective cartilage. Different approaches are used for cartilage engineering, in which cells, scaffolds, and biological signals or growth factors may be used alone or in combination. Additionally, the imitation of the mechanical properties of the natural cartilage tissue by bioreactors is also helpful in this regard. It should be noted that in the transplantation of engineered cartilage tissue, there are challenges such as poor integration, inflammation and phenotypic instability that may lead to failure of neo-cartilage transplantation. Therefore, a comprehensive understanding of the multiple therapeutic approaches, including surgical procedures, cell-based methods and tissue engineering, should be obtained. The present review article provides this information, along with a variety of factors, including cells, materials, and biological/biomechanical factors required for the engineering of cartilage tissue, as well as the challenges ahead and their solutions.


Asunto(s)
Cartílago Articular/citología , Ingeniería de Tejidos/métodos , Animales , Cartílago Articular/fisiología , Humanos , Andamios del Tejido
6.
Drug Deliv ; 27(1): 269-282, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32009480

RESUMEN

Piroxicam (PX), a main member of non-steroidal anti-inflammatory drugs (NSAIDs), is mainly used orally, which causes side effects of the gastrointestinal tract. It also has systemic effects when administered intramuscularly. Intra-articular (IA) delivery and encapsulation of PX in biodegradable poly-ε-caprolactone (PCL) nanoparticles (NPs) offer potential advantages over conventional oral delivery. The purpose of this study is the development of a new type of anti-inflammatory bio-agents containing collagen and PX-loaded NPs, as an example for an oral formulation replacement, for the prolonged release of PX. In this study, the PX was encapsulated in PCL NPs (size 102.7 ± 19.37 nm, encapsulation efficiency 92.83 ± 0.4410) by oil-in-water (o/w) emulsion solvent evaporation method. Nanoparticles were then characterized for entrapment efficiency, percent yield, particle size analysis, morphological characteristics, and in vitro drug release profiles. Eventually, the NPs synthesized with collagen were conjugated so that the NPs were trapped in the collagen sponges using a cross-linker. Finally, biocompatibility tests showed that the anti-inflammatory agents made in this study had no toxic effect on the cells. Based on the results, it appears that PX-loaded PCL NPs along with collagen (PPCLnp-Coll) can be promising for IA administration based on particulate drug delivery for the treatment of arthritis.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Productos Biológicos/administración & dosificación , Colágeno/administración & dosificación , Nanopartículas/administración & dosificación , Piroxicam/administración & dosificación , Caproatos/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos , Liberación de Fármacos , Emulsiones , Voluntarios Sanos , Inyecciones Intraarticulares , Lactonas/química , Tamaño de la Partícula
7.
ACS Omega ; 3(8): 8605-8611, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458990

RESUMEN

Three-dimensional (3D) biodegradable and biomimetic porous scaffolds are ideal frameworks for skin tissue engineering. In this study, hybrid constructs of 3D scaffolds were successfully fabricated by the freeze-drying method from combinations of the type I collagen (Col) and synthetic poly(lactic acid) (PLLA) or polycaprolactone (PCL). Four different groups of 3D porous scaffolds including PCL, PCL-Col, PCL-PLLA, and PCL-PLLA-Col were fabricated and systematically characterized by hydrogen nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). Adipose tissue-derived mesenchymal stem cells (AT-MSCs) were seeded in all scaffolds, and the viability, proliferation, and adhesion of the cells were investigated using dimethylthiazol diphenyltetrazolium bromide assay and SEM. The results showed that scaffolds containing Col, particularly PCL-PLLA-Col scaffold, with pore sizes close to 400 nm and being sufficiently interconnected, have significantly greater potential (p < 0.01) for encouraging AT-MSCs adhesion and growth. The PCL-PLLA provided a mechanically stronger mesh support, and the type I Col microsponges encouraged excellent cell adhesion and tissue formation. The scaffold with the best properties could be an appropriate functional candidate for the preparation of artificial skin constructs.

8.
Artif Cells Nanomed Biotechnol ; 46(4): 691-705, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28697631

RESUMEN

The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.


Asunto(s)
Plásticos Biodegradables/uso terapéutico , Dermis/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Cicatrización de Heridas , Animales , Dermis/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...