Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36986662

RESUMEN

The third most common cancer worldwide is colon cancer (CC). Every year, there more cases are reported, yet there are not enough effective treatments. This emphasizes the need for new drug delivery strategies to increase the success rate and reduce side effects. Recently, a lot of trials have been done for developing natural and synthetic medicines for CC, among which the nanoparticle-based approach is the most trending. Dendrimers are one of the most utilized nanomaterials that are accessible and offer several benefits in the chemotherapy-based treatment of CC by improving the stability, solubility, and bioavailability of drugs. They are highly branched polymers, making it simple to conjugate and encapsulate medicines. Dendrimers have nanoscale features that enable the differentiation of inherent metabolic disparities between cancer cells and healthy cells, enabling the passive targeting of CC. Moreover, dendrimer surfaces can be easily functionalized to improve the specificity and enable active targeting of colon cancer. Therefore, dendrimers can be explored as smart nanocarriers for CC chemotherapy.

2.
Chem Phys Lipids ; 233: 104978, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32991905

RESUMEN

Lung cancer is one of the most common malignant tumors and emerged as one of the leading causes of cancer-related death worldwide. Surgical resection can be a curative treatment for early stage but the most of lung cancer patients are diagnosed at an advanced stage when the pulmonary tumor has been invaded beyond the respiratory system. Therefore, chemotherapy is suitable for curing metastasized tumor. Baicalin (BL) is a flavonoid which has been studied in the treatment of several types of cancer including lung cancer. However, its low solubility in water and non-specificity impede its practical utilization. Hence, we have reported a stearic acid and pluronic F68 conjugated nanomicelles (PF68-SA) system to improve therapeutic efficacy of BL. Solvent evaporation method was used to prepare the BL-loaded PF68-SA nanomicelles (BLNM). The designed BLNM were characterized for the particle size, surface charge, critical micelle concentration, colloidal stability, morphology, and total drug content. BLNM formulation showed improved toxicity of BL against A549 human lung cancer cells in cytotoxicity assay. Further, apoptosis study also depicted BLNM-induced cell death in A549 cells. Therefore, the synthesized fatty acid-modified polymeric nanomicellar system could be useful in overcoming the stability and low therapeutic efficacy issues of hydrophobic anticancer drugs like BL and delivering them to the cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Poloxámero/química , Ácidos Esteáricos/química , Células A549 , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/química , Humanos , Neoplasias Pulmonares/patología , Micelas , Tamaño de la Partícula , Propiedades de Superficie , Células Tumorales Cultivadas
3.
Curr Drug Metab ; 20(6): 506-532, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30251600

RESUMEN

BACKGROUND: In the last few years, the use of modified Carbon Nanomaterials (CNMs) for theranostics (therapeutic and diagnosis) applications is a new and rapidly growing area in pharmacy and medical fields. Owing to this, their specific physicochemical behaviors like high stability, drug loading, surface area to volume ratio, with low toxicity and immunogenicity are mainly responsible to be considered those as smart nanomaterials. OBJECTIVES: This review describes the different dimensions of carbon-based nanocarriers including 0-D fullerene, 1-D Carbon Nanotubes (CNTs), and 2-D graphene and Graphene Oxide (GO) and their surface modification with different biocompatible and biodegradable molecules via covalent or non-covalent functionalization. The major focus of this article is on the different theranostics applications of CNMs like targeted drugs and genes delivery, photodynamic therapy, photothermal therapy, bioimaging, and biosensing. The therapeutic efficacy of drugs could be enhanced by delivering them directly on a specific site using different targeted ligands such as vitamins, peptide, carbohydrates, proteins, etc. A section of the article also discusses the toxicity of the CNMs to the living systems. CONCLUSIONS: In brief, this review article discusses the numerous theranostics applications and toxicities of CNMs.


Asunto(s)
Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Nanomedicina Teranóstica , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Terapia Genética , Grafito/química , Nanomedicina , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...