Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant Physiol Biochem ; 203: 108011, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714025

RESUMEN

Withania somnifera (L.) Dunal (Ashwagandha) has been used in herbal medicines worldwide and in the Indian traditional medicinal system for 3000 years. It is a member of the Solanaceae family distributed across Asia, Africa, Australia, and Europe. Its bioactive secondary metabolite (withanolide) biosynthesis is sensitive to salinity stress, though the mechanism remains unexplored. Therefore, we investigated the effect of Sodium chloride (NaCl) on growth, photosynthesis, biochemical traits, tissue-specific withanolide, and untargeted metabolites in W. somnifera. Ashwagandha plants were raised in pots containing soil mixture and treated with different NaCl concentrations (0 as control, 10, 30, and 50 mM) for one month inside the greenhouse. NaCl stress significantly enhanced withaferin A (WFA) (3.79 mg/g), withanolide A (WA) (0.51 mg/g), and withanone (WN) (0.022 mg/g) at 50 mM NaCl groups in the shoot. Similarly, in the root, a significant increase in WFA (0.19 mg/g) and WN (0.0016 mg/g) were observed at 10 mM, WA (0.059 mg/g) at 30 mM, and withanolide B (WB) (0.013 mg/g) at 50 mM NaCl groups compared to control. LC-MS-based untargeted metabolite profiling revealed 37 differentially accumulated metabolites in all groups. Maximum abundance of glycyl-hydroxyproline (8X) followed by tyrosyl-valine (2X) and 3-hydroxy-beta-ionone (2X) were recorded at 50 mM NaCl groups compared to the control. This study showed for the first time that low NaCl stress enhances the biosynthesis of tissue-specific withanolides through physio-biochemical and metabolites adjustment. Overall, we demonstrated a multifaceted approach for cultivating medicinal crops in salt-affected areas with enhanced bioactive metabolites for healthcare and pharmaceutical industries.

2.
3 Biotech ; 13(9): 304, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37593204

RESUMEN

The adulteration of plants and their materials used in herbal formulations poses a severe health concern. Hence, there is a need to establish a reliable, cost-effective, and robust molecular biomarker to distinguish among species and identify herbal plants and raw drugs from adulterants. The present study used suppressive subtractive hybridization and next-generation sequencing technology to identify novel DNA markers for Boerhavia diffusa L. and Tinospora cordifolia (Willd.) Miers. We identified two primer sets for B. diffusa and one for T. cordifolia. The DNA markers were validated in different accessions of B. diffusa and T. cordifolia and their common adulterants to determine the sensitivity and specificity of developed DNA markers. The designed DNA markers showed 100% sensitivity and specificity in detecting B. diffusa and T. cordifolia from their adulterants. The strategy described here can be extrapolated for developing DNA markers to authenticate other plant species. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03732-7.

3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119505, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286138

RESUMEN

Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.


Asunto(s)
Compuestos de Bencidrilo , Estrógenos , Humanos , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Mitocondrias
4.
J Biomol Struct Dyn ; 41(21): 11930-11945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042962

RESUMEN

Tribulus terrestris L. (Gokshura) is a medicinal herb used for treating cardiac diseases and several other diseases. However, the active ingredients and the possible mechanism of action for treating cardiac diseases remain unclear. Hence, the study was designed to identify the active ingredients and to explore the potential mechanism of action of Tribulus terrestris L. for treating cardiac diseases by an integrated approach of metabolomics and network pharmacology. We performed HPLC-QTOF-MS/MS analysis to identify putative compounds and network pharmacology approach for predictive key targets and pathways. Using molecular docking and molecular dynamics simulation, we identified the active ingredients in Tribulus terrestris L. that can act as putative lead compounds to treat cardiac diseases. A total of 55 putative compounds were identified using methanolic extract of Tribulus terrestris L. using HPLC-QTOF-MS/MS analysis. Network pharmacology analysis predicted 32 human protein targets from 25 secondary metabolites, which have shown direct interaction with cardiac diseases. Based on the degrees of interaction, the hub targets such as TACR1, F2, F2R, ADRA1B, CHRM5, ADRA1A, ADRA1D, HTR2B, and AVPR1A were identified. In silico molecular docking and simulation resulted in the identification of active ingredients such as Kaempferol 3-rutinoside 7-glucuronide, Keioside, rutin, moupinamide, aurantiamide, quercetin-3-o-α-rhamnoside, tribuloside, and 3'',6''- Di-O-p-coumaroyltrifolin against hub protein targets. Hence, these compounds could be potential lead compounds for treating cardiac diseases. A further assessment of its efficacy can be made based on in vivo and in vitro studies for better understanding and strong assertion.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Medicamentos Herbarios Chinos , Cardiopatías , Tribulus , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Farmacología en Red
5.
Environ Sci Pollut Res Int ; 30(23): 64025-64035, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060405

RESUMEN

Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/inducido químicamente , Cromatografía Liquida , Espectrometría de Masas en Tándem , Plasma
6.
Toxicol Appl Pharmacol ; 457: 116296, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36328110

RESUMEN

Phthalates have been extensively used as plasticizers while manufacturing plastic-based consumer products. Estradiol mimicking properties and association studies suggest phthalates may contribute to breast cancer (BC). We performed an in-silico analysis and functional studies to understand the association between phthalate exposure and BC progression. Search for phthalate-responsive genes using the comparative toxicogenomics database identified 20 genes as commonly altered in response to multiple phthalates exposure. Of the 20 genes, 12 were significantly differentially expressed between normal and BC samples. In BC samples, 9 out of 20 genes showed a negative correlation between promoter methylation and its expression. AHR, BAX, BCL2, CAT, ESR2, IL6, and PTGS2 expression differed significantly between metastatic and non-metastatic BC samples. Gene set enrichment analysis identified metabolism, ATP-binding cassette transporters, insulin signaling, and type II diabetes as highly enriched pathways. The diagnostic assessment based on 20 genes expression suggested a sensitivity and a specificity >0.91. The aberrantly expressed phthalate interactive gene influenced the overall survival of BC patients. Drug-gene interaction analysis identified 14 genes and 523 candidate drugs, including 19 BC treatment-approved drugs. Di(2-ethylhexyl) phthlate (DEHP) exposure increased the growth, proliferation, and migration of MCF-7 and MDA-MB-231 cells in-vitro. DEHP exposure induced morphological changes, actin cytoskeletal remodeling, increased ROS content, reduced basal level lipid peroxidation, and induced epithelial to mesenchymal transition (EMT). The present approach can help to explore the potentially damaging effects of environmental agents on cancer risk and understand the underlined pathways and molecular mechanisms.

7.
Environ Toxicol Pharmacol ; 96: 104010, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36334871

RESUMEN

Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by ß-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.


Asunto(s)
Disruptores Endocrinos , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Disruptores Endocrinos/toxicidad , Compuestos de Bencidrilo/toxicidad , Sistema Endocrino , Mitocondrias , Senescencia Celular , Fenotipo
8.
3 Biotech ; 12(11): 287, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36164436

RESUMEN

The outbreak of COVID-19 caused by the coronavirus (SARS-CoV-2) prompted number of computational and laboratory efforts to discover molecules against the virus entry or replication. Simultaneously, due to the availability of clinical information, drug-repurposing efforts led to the discovery of 2-deoxy-d-glucose (2-DG) for treating COVID-19 infection. 2-DG critically accumulates in the infected cells to prevent energy production and viral replication. As there is no clarity on the impact of genetic variations on the efficacy and adverse effects of 2-DG in treating COVID-19 using in silico approaches, we attempted to extract the genes associated with the 2-DG pathway using the Comparative Toxicogenomics Database. The interaction between selected genes was assessed using ClueGO, to identify the susceptible gene loci for SARS-CoV infections. Further, SNPs that were residing in the distinct genomic regions were retrieved from the Ensembl genome browser and characterized. A total of 80 SNPs were retrieved using diverse bioinformatics resources after assessing their (a) detrimental influence on the protein stability using Swiss-model, (b) miRNA regulation employing miRNASNP3, PolymiRTS, MirSNP databases, (c) binding of transcription factors by SNP2TFBS, SNPInspector, and (d) enhancers regulation using EnhancerDB and HaploReg reported A2M rs201769751, PARP1 rs193238922 destabilizes protein, six polymorphisms of XIAP effecting microRNA binding sites, EGFR rs712829 generates 15 TFBS, BECN1 rs60221525, CASP9 rs4645980, SLC2A2 rs5393 impairs 14 TFBS, STK11 rs3795063 altered 19 regulatory motifs. These data may provide the relationship between genetic variations and drug effects of 2-DG which may further assist in assigning the right individuals to benefit from the treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03363-4.

9.
Front Plant Sci ; 13: 917770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774803

RESUMEN

Ashwagandha (Withania somnifera L. Dunal) is a medicinally important plant with withanolides as its major bioactive compounds, abundant in the roots and leaves. We examined the influence of plant growth regulators (PGRs) on direct organogenesis, adventitious root development, withanolide biosynthetic pathway gene expression, withanolide contents, and metabolites during vegetative and reproductive growth phases under in vitro and ex vitro conditions. The highest shooting responses were observed with 6-benzylaminopurine (BAP) (2.0 mg L-1) + Kinetin (KIN) (1.5 mg L-1) supplementation. Furthermore, BAP (2.0 mg L-1) + KIN (1.5 mg L-1) + gibberellic acid (GA3) (0.5 mg L-1) exhibited better elongation responses with in vitro flowering. Half-strength MS medium with indole-3-butyric acid (IBA) (1.5 mg L-1) exhibited the highest rooting responses and IBA (1.0 mg L-1) with highest fruits, and overall biomass. Higher contents of withaferin A (WFA) [∼8.2 mg g-1 dry weight (DW)] were detected in the reproductive phase, whereas substantially lower WFA contents (∼1.10 mg g-1 DW) were detected in the vegetative phase. Cycloartenol synthase (CAS) (P = 0.0025), sterol methyltransferase (SMT) (P = 0.0059), and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) (P = 0.0375) genes resulted in a significant fold change in expression during the reproductive phase. The liquid chromatography-mass spectrometry (LC-MS) analysis revealed metabolites that were common (177) and distinct in reproductive (218) and vegetative (167) phases. Adventitious roots cultured using varying concentrations of indole-3-acetic acid (IAA) (0.5 mg L-1) + IBA (1.0 mg L-1) + GA3 (0.2 mg L-1) exhibited the highest biomass, and IAA (0.5 mg L-1) + IBA (1.0 mg L-1) exhibited the highest withanolides content. Overall, our findings demonstrate the peculiarity of withanolide biosynthesis during distinct growth phases, which is relevant for the large-scale production of withanolides.

10.
Appl Biochem Biotechnol ; 194(10): 4546-4569, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35522363

RESUMEN

Vateria indica is persistent tree used in Unani sources for the medication and classified as critically endangered. Thus, endophytes for alternative methods to explore these endangered Plants having rich source pharmaceuticals' active molecules for drug development and production. Endophytes comprises unexplored microbes as a potential source of rich pharmaceutically bioactive compounds attributable to their relationship with the host. In the current study, we have isolated endophyte fungi Cladosporium from the plant Vateria indica and performed phytochemical screening of its ethanolic extract to detect the phytochemicals using thin layer chromatography (TLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), UV-visible spectrophotometry (UV-VIS), and Fourier transform infrared spectroscopy (FTIR). GC-MS analysis revealed the presence of an anticancer compound hydroxymethyl colchicine, antioxidant compound benzoic acid, and antimicrobial 2-(4-chlorophenoxy)-5-nitro in endophyte fungal extract of plant Vateria indica. Moreover, in silico analysis of bioactive compounds identified by GC-MS analysis using the Autodock Vina and SwissADME confirmed excellent anticancer activity methanone, [4-amino-2-[(phenylmethyl) amino]-5-thiazolyl] (4-fluorophenyl)- and hydroxymethyl colchicine against 6VO4 (Bfl-1 protein) as per Lipinski rule. Furthermore, we also demonstrated the excellent antioxidant of endophytic extract compared to plant extract by DPPH and ABTS assay, as well as antimicrobial activity against both Gram (+ ve) and Gram (- ve) bacteria. Moreover, the endophytic extract also showed its antimitotic activity with a mitotic index of 65.32, greater than the plant extract of 32.56 at 10 mg/ml. Thus endophytic fungi Cladosporium species isolated from plant Vateria indica might be used as a potential source for phytochemical anticancer hydroxymethyl colchicine, an antioxidant benzoic acid, and antimicrobial 2-(4-chlorophenoxy)-5-nitro.


Asunto(s)
Antiinfecciosos , Antimitóticos , Dipterocarpaceae , Antibacterianos , Antiinfecciosos/metabolismo , Antimitóticos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Benzoico/metabolismo , Cladosporium , Colchicina/metabolismo , Endófitos , Metilcelulosa/metabolismo , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Plantas
11.
Environ Sci Pollut Res Int ; 29(22): 32631-32650, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199272

RESUMEN

Bisphenol A (BPA) is one of the most widely studied endocrine disrupting chemicals because of its structural similarity to 17-ß estradiol; its ability to bind as an agonist/antagonist to estrogen receptors elicits adverse effects on the functioning of the metabolic and endocrinal system. Therefore, BPA has been thoroughly scrutinized concerning its disruption of pathways like lipid metabolism, steroidogenesis, insulin signaling, and inflammation. This has resulted in reports of its correlation with various aspects of cardiovascular diseases, obesity, diabetes, male and female reproductive disorders, and dysfunctions. Among these, the occurrence of the polycystic ovarian syndrome (PCOS) in premenopausal women is of great concern. PCOS is a highly prevalent disorder affecting women in their reproductive age and is clinically characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology, along with metabolism-related dysfunctions like hyperinsulinemia, obesity, and insulin resistance. In this review, we analyzed certain researched effects of BPA, while focusing on its ability to alter the expression of various significant genes like GnRH, AdipoQ, ESR1, StAR, CYP11A1, CYP19A1, and many more involved in the pathways and endocrine regulation, whose disruption is commonly associated with the clinical manifestations of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Compuestos de Bencidrilo/toxicidad , Femenino , Expresión Génica , Humanos , Masculino , Obesidad , Fenoles , Síndrome del Ovario Poliquístico/inducido químicamente
12.
3 Biotech ; 11(12): 507, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34868802

RESUMEN

Moscatilin, a bibenzyl derivative (stilbenoid), mostly found in one of the largest genera of Orchidaceae; Dendrobium has many therapeutic benefits. Its function as an anticancer agent has been widely demonstrated through many research investigations. However, the compound has not been produced in vitro to date. The present study highlights the development of cultures viz., seedling generation, callus induction and callus regeneration (transformation of callus into plantlets). These cultures were devised to conserve the threatened tropical epiphytic orchid species, Dendrobium ovatum and identify their potential towards moscatilin bioproduction in vitro. Among the three culture platforms, callus-derived plantlets could yield high moscatilin when treated with l-Phenylalanine as a precursor. Tissue differentiation was found to be indispensable for the high production of this polyphenol. These cultures also offer potential commercial benefits as they can serve as appropriate platforms to decode moscatilin biosynthesis and other significant bibenzyl derivatives. Elicitors, such as chitosan, salicylic acid, and methyl jasmonate, were found, causing an enhancement in moscatilin content in the cultures. The seedlings obtained can serve towards ecorestoration and preservation of the studied species. Callogenesis was useful in plantlet regeneration, as callus-derived plantlets could be utilized for the enrichment and commercial scale-up of moscatilin-like chemicals.

13.
Per Med ; 18(6): 595-611, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34689602

RESUMEN

The primary purpose of 'omics' technologies is to understand the intricacy of genomics, proteomics, metabolomics and other molecular mechanisms to reveal the complex traits of human diseases. The significant use of omics technologies and their applications in medicine gear up the study of the pathogenesis of several disorders. The detection of biomarkers in the early onset of diseases is challenging; still, omics can discover novel molecular mechanisms and biomarkers. In this review, the different types of omics and their technologies are explicated and aimed to provide their emerging applications in cardiovascular precision medicine. These technologies significantly impact optimizing medical treatment for individuals to reach a higher level in precision medicine.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Genómica , Humanos , Metabolómica , Medicina de Precisión , Proteómica
14.
Per Med ; 18(4): 389-398, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34086487

RESUMEN

Immunomodulatory and analgesic effects of dexamethasone are clinically well established, and this synthetic corticosteroid acts as an agonist of glucocorticoid receptors. Early results of the RECOVERY Trial from the United Kingdom and others suggest certain benefits of dexamethasone against COVID-19 chronic patients. The efforts have been acknowledged by World Health Organization with an interim guideline to use in patients with a severe and critical illness. The inherent genetic variations in genes such as CYP3A5, NR3C1, NR3C2, etc., involved in the pharmacokinetic and pharmacodynamic processes may influence dexamethasone's effects as an anti-inflammatory drug. Besides, the drug may influence transcriptome or metabolic changes in the individuals. In the present review, we summarize the reported genetic variations that impact dexamethasone response and discuss dexamethasone-induced changes in transcriptome and metabolome that may influence potential treatment outcome against COVID-19.


Lay abstract The surge of COVID-19 cases has increased the need for the development of a cure. This has pushed the barriers of the regulatory controls for randomized controlled trials. There has been the usage of immunomodulatory drugs, such as dexamethasone, with promising results in severe COVID-19 patients to reduce mortality. However, there is a need to consider the inherent genetic factors of an individual that may influence the dexamethasone drug's metabolism and action. To understand this, there is a need to evaluate the genes involved in the pharmacokinetics and pharmacodynamic pathways of the drug and study the effects of the drug. This will aid in choosing the right individuals who will benefit from the therapy. Hence, the present review summarized the reported genetic variations that impact dexamethasone drug response.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/genética , Dexametasona/farmacología , Reposicionamiento de Medicamentos , Glucocorticoides/uso terapéutico , Farmacogenética , SARS-CoV-2 , Animales , Femenino , Frecuencia de los Genes , Variación Genética , Humanos , Masculino , Metaboloma , Modelos Animales , Preparaciones Farmacéuticas , Guías de Práctica Clínica como Asunto , Transcriptoma
15.
3 Biotech ; 11(6): 281, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34094800

RESUMEN

Moscatilin (stilbenoid) is a plant-derived anticancer compound, and it has mostly been isolated from threatened wild Dendrobium species. The present study attempts to evaluate the cytotoxicity of Moscatilin on several cancer cell lines through MTT assay. Additionally, it also aims towards estimating and comparing the radiosensitivity, cell-cycle progression, and apoptotic/necrotic effect induced by Moscatilin on different cell lines. The effects of Moscatilin was compared with another significant stilbenoid anticancer agent, Resveratrol (a structural analog of Moscatilin), whose presence has also been reported in Dendrobiums. Considering the threatened nature of this genus, crude extracts of a tropical and epiphytic Dendrobium species, viz., Dendrobium ovatum, prepared from in vitro seedlings were also tested towards cytotoxicity and radiosensitization efficacy. Moscatilin functioned as an effective radiosensitizer at 5 µg/ml along with 1 Gy X-ray and 200 J/m2 UV-C radiations. It was also able to perturb cell cycle both at replicative and post-replicative phases with the aforementioned combination. Moscatilin, in unison with radiation, triggered immunogenic death specifically on cancer cells starting from Pyroptosis, terminating in Necroptosis. Moscatilin, when used singly, could evoke immunogenic cell death. Analyses of Damage-Associated Molecular Patterns released during radiation and Moscatilin treatment would aid in ascertaining the mode of cell death. Moscatilin is a potential radiosensitizer and must be tested for preclinical and clinical trials to combat cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02827-3.

16.
J Ethnopharmacol ; 273: 113928, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33631274

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus species is extensively cultivated and used as edible fruits and herbal drugs. The Phyllanthus species are used extensively as ethnopharmacologically important materials in several countries, especially in Asia. Various Phyllanthus species are broadly used in the Ayurvedic system of medicine and deliberated as bitter, astringent, stomachic, diuretic, febrifuge, deobstruent, and antiseptic, and used for the treatment of digestive, genitourinary, respiratory, skin diseases, hepatopathy, jaundice, and renal calculus in India. Precise authentification of Phyllanthus species is a challenge due to morphological similarities and is important to avoid adulteration found in herbal drugs. Hence, there is a need to establish comprehensive methods for the identification of Phyllanthus species. AIM OF THE STUDY: In this study, we attempted to integrate untargeted metabolomics to identify species-specific metabolites with traditional phylogenetic analysis for identification and discrimination of nine Phyllanthus species. MATERIALS AND METHODS: Phyllanthus species such as P. acidus, P. amarus, P. debilis, P. emblica, P. virgatus, P. urinaria, P. lawii, P. myrtifolius, and P. reticulatus were collected. The liquid chromatography coupled mass spectrometry (LC-MS) was performed for untargeted metabolite profiling and MS/MS fragmentation analysis was performed for selected compounds. Further, the barcoding analysis was executed using plastid loci, rpoC1 to integrate with metabolite profiling data. RESULTS: The Principal Component Analysis (PCA) of leaf metabolites showed distinct clusters in different species. Through further analysis, we have also identified the qualitative and quantitative status of unique metabolites across the species, and the majority of the selected compounds were annotated. The metabolic fingerprinting and the hierarchical clustering indicated that though the P. deblis and P. virgatus are distantly related to each other, they are closely associated with their metabolic profiling. Similarly, P. myrtifolius and P. urinaria are closely related to each other with their metabolic fingerprints than the genetic alignment. Further, we performed barcoding with rpoC1 across nine Phyllanthus species (P. acidus, P. amarus, P. debilis, P. emblica, P. virgatus, P. urinaria, P. lawii, P. myrtifolius, and P. reticulatus). Sequence similarity search in the GenBank database showed rpoC1 barcode loci from nine Phyllanthus species showed significant identity (>97%) with the sequences of various Phyllanthus species. CONCLUSIONS: The bioactive metabolites and their abundance can be assigned to specific species thereby serving as a biological signature and indicators for potential therapeutic use. This study identified differential expression of 14 secondary metabolites from nine Phyllanthus species. Alkaloid compound zeatin was found specific to P. virgatus and delphinidin-3-O- ß -D-glucoside was not found in P. myrtifolius. Barcoding and phylogenetic analysis showed P. acidus is the most genetically distinct among the groups and the sequence pair between P.emblica-P.reticulatus and P.emblica-P.urinaria showed the least difference.


Asunto(s)
Phyllanthus/química , Phyllanthus/clasificación , Extractos Vegetales/química , Extractos Vegetales/clasificación , Cromatografía Liquida , Análisis por Conglomerados , Código de Barras del ADN Taxonómico , Metabolómica , Phyllanthus/metabolismo , Filogenia , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Espectrometría de Masas en Tándem
17.
Pharmacogenomics ; 22(2): 99-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356544

RESUMEN

Aim: The present study was conducted to decipher the inter-relationship of SNPs and miRNAs involved in pharmacogenomics of clopidogrel on predisposition to cardiovascular diseases (CVDs). Materials & methods: A case-control study was conducted on 410 cases and 386 controls to analyze the association of 13 mirSNPs on CVDs risk. Genotyping was performed by tetra-primer amplification refractory mutation system PCR and validated using Sanger DNA sequencing. miRNA expression analysis was performed using TaqMan assays. A meta-analysis was performed for PON1 rs662 with coronary artery disease. Results & conclusion:PON1 rs662, PON1 rs3917577, CYP3A5 rs15524, COL4A1 rs874204 and PTGIR rs1126510 polymorphisms showed association with CVDs. The miRNA hsa-miR-224-5p showed differential expression in the PON1 rs3917577 GG genotype. The meta-analysis showed the population-specific impact of PON1 rs662 on South Asian and Middle East populations.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/genética , Clopidogrel/farmacocinética , MicroARNs/genética , Inhibidores de Agregación Plaquetaria/farmacocinética , Polimorfismo de Nucleótido Simple/genética , Anciano , Arildialquilfosfatasa/genética , Pueblo Asiatico , Estudios de Casos y Controles , Colágeno Tipo IV/genética , Citocromo P-450 CYP3A/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Medio Oriente , Mutación
18.
aBIOTECH ; 2(1): 96-104, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36304480

RESUMEN

Metabolic pathway reconstruction and gene edits for native natural product synthesis in single plant cells are considered to be less complicated when compared to the production of non-native metabolites. Being an efficient eukaryotic system, plants encompass suitable post-translational modifications. However, slow cell division rate and heterogeneous nature is an impediment for consistent product retrieval from plant cells. Plant cell synchrony can be attained in cultures developed in vitro. Isolated plant protoplasts capable of division, can potentially enhance the unimpaired yield of target bioactives, similar to microbes and unicellular eukaryotes. Evidence from yeast experiments suggests that 'critical cell size' and division rates for enhancement machinery, primarily depend on culture conditions and nutrient availability. The cell size control mechanisms in Arabidopsis shoot apical meristem is analogous to yeast notably, fission yeast. If protoplasts isolated from plants are subjected to cell size studies and cell cycle progression in culture, it will answer the underlying molecular mechanisms such as, unicellular to multicellular transition states, longevity, senescence, 'cell-size resetting' during organogenesis, and adaptation to external cues.

19.
J Ayurveda Integr Med ; 12(1): 131-135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32800398

RESUMEN

The positive association of HSD11B1 gene polymorphism with type 2 diabetes (T2D) and prediabetic conditions has been revealed. In the current study, we assessed the effectiveness of licorice on the clinical profile of the patients with HSD11B1 gene polymorphism. Licorice (Glycyrrhiza Glabra) is a competitive inhibitor of 11 beta-hydroxysteroid dehydrogenase 1 (11ß-HSD1) enzyme and has been traditionally reported as an anti-ulcer, anti-pyretic, anti-thirst, anti-inflammatory, hypoglycemic and hypolipidemic agent. The aim of the study was to assess the effectiveness of licorice on the clinical profile of participants with HSD11B1 gene polymorphism. The study was performed using diabetic patients with HSD11B1 gene polymorphism. Biochemical and anthropometric parameters were measured using standard diagnostic tools. Fourteen patients were divided into two groups by simple randomization, Licorice group (treated with 750 mg licorice/day for three weeks), and placebo group (treated with 750 mg placebo/day for three weeks). Investigations were repeated at the end of three weeks. Licorice showed a significant reduction in serum insulin levels (p = 0.03). There was no significant change in any other clinical parameters either by licorice or placebo. Conclusively, licorice moderately improves serum insulin levels in patients with HSD11B1 gene polymorphism. From our pilot study, the safety of licorice is confirmed at a dose of 750 mg/day. However, the study can be repeated at a higher dose to show its effectiveness and safety.

20.
Public Health Genomics ; 23(5-6): 155-170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32966991

RESUMEN

INTRODUCTION: The complex genetic diversity among human populations results from an assortment of factors acting at various sequential levels, including mutations, population migrations, genetic drift, and selection. Although there are a plethora of DNA sequence variations identified through genome-wide association studies (GWAS), the challenge remains to explain the mechanisms underlying interindividual phenotypic disparity accounting for disease susceptibility. Single nucleotide polymorphisms (SNPs) present in the sites for DNA methylation, transcription factor (TF) binding, or miRNA targets can alter the gene expression. The systematic review aimed to evaluate the complex crosstalk among SNPs, miRNAs, DNA methylation, and TFs for complex multifactorial disease risk. METHODS: PubMed and Scopus databases were used from inception until May 15, 2019. Initially, screening of articles involved studies assessing the interaction of SNPs with TFs, DNA methylation, or miRNAs resulting in allele-specific gene expression in complex multifactorial diseases. We also included the studies which provided experimental validation of the interaction of SNPs with each of these factors. The results from various studies on multifactorial diseases were assessed. RESULTS: A total of 11 articles for SNPs interacting with DNA methylation, 30 articles for SNPs interacting with TFs, and 11 articles for SNPs in miRNA binding sites were selected. The interactions of SNPs with epigenetic factors were found to be implicated in different types of cancers, autoimmune diseases, cardiovascular diseases, diabetes, and asthma. CONCLUSION: The systematic review provides evidence for the interplay between genetic and epigenetic risk factors through allele-specific gene expression in various complex multifactorial diseases.


Asunto(s)
Alelos , Metilación de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Unión , Epigénesis Genética , Expresión Génica , Humanos , MicroARNs/genética , Fenotipo , Factores de Riesgo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...