Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 12: 100163, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34901818

RESUMEN

Carbon dioxide (CO2)-laser processing of glasses is a versatile maskless writing technique to engrave micro-structures with flexible control on shape and size. In this study, we present the fabrication of hundreds of microns quartz micro-channels and micro-holes by pulsed CO2-laser ablation with a focus on the great potential of the technique in microfluidics and biomedical applications. After discussing the impact of the laser processing parameters on the design process, we illustrate specific applications. First, we demonstrate the use of a serpentine microfluidic reactor prepared by combining CO2-laser ablation and post-ablation wet etching to remove surface features stemming from laser-texturing that are undesirable for channel sealing. Then, cyclic olefin copolymer micro-pillars are fabricated using laser-processed micro-holes as molds with high detail replication. The hundreds of microns conical and square pyramidal shaped pillars are used as templates to drive 3D cell assembly. Human Umbilical Vein Endothelial Cells are found to assemble in a compact and wrapping way around the micro-pillars forming a tight junction network. These applications are interesting for both Lab-on-a-Chip and Organ-on-a-Chip devices.

2.
Sensors (Basel) ; 18(8)2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087266

RESUMEN

An accurate and easy-to-use Q3 system for on-chip quantitative real-time Polymerase Chain Reaction (qPCR) is hereby demonstrated, and described in detail. The qPCR reactions take place inside a single-use Lab-on-a-Chip with multiple wells, each with 5 to 15 µL capacity. The same chip hosts a printed metal heater coupled with a calibrated sensor, for rapid and accurate temperature control inside the reaction mixture. The rest of the system is non-disposable and encased in a 7 × 14 × 8.5 (height) cm plastic shell weighing 300 g. Included in the non-disposable part is a fluorescence read-out system featuring up to four channels and a self-contained control and data storage system, interfacing with an external user-friendly software suite. Hereby, we illustrate the engineering details of the Q3 system and benchmark it with seamlessly ported testing protocols, showing that Q3 equals the performance of standard commercial systems. Overall, to the best of our knowledge, this is one of the most mature general-purpose systems for on-chip qPCR currently available.


Asunto(s)
Dispositivos Laboratorio en un Chip , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...