Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511434

RESUMEN

DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.


Asunto(s)
Enfermedad de Alzheimer , S-Adenosilmetionina , Embarazo , Femenino , Ratones , Animales , S-Adenosilmetionina/metabolismo , Memoria Epigenética , Metilación de ADN , Ratones Transgénicos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Suplementos Dietéticos
2.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201262

RESUMEN

Besides its role in coagulation, vitamin K seems to be involved in various other mechanisms, including inflammation and age-related diseases, also at the level of gene expression. This work examined the roles of two vitamin K2 (menaquinones) vitamers, namely, menaquinone-4 (MK4) and reduced menaquinone-7 (MK7R), as gene modulator compounds, as well as their potential role in the epigenetic regulation of genes involved in amyloidogenesis and neuroinflammation. The SK-N-BE human neuroblastoma cells provided a "first-line" model for screening the neuroinflammatory and neurodegenerative molecular pathways. MK7R, being a new vitamin K form, was first tested in terms of solubilization, uptake and cell viability, together with MK4 as an endogenous control. We assessed the expression of key factors in amyloidogenesis and neuroinflammation, observing that the MK7R treatment was associated with the downregulation of neurodegeneration- (PSEN1 and BACE1) and neuroinflammation- (IL-1ß and IL-6) associated genes, whereas genes retaining protective roles toward amiloidogenesis were upregulated (ADAM10 and ADAM17). By profiling the DNA methylation patterns of genes known to be epigenetically regulated, we observed a correlation between hypermethylation and the downregulation of PSEN1, IL-1ß and IL-6. These results suggest a possible role of MK7R in the treatment of cognitive impairment, giving a possible base for further preclinical experiments in animal models of neurodegenerative disease.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Animales , Humanos , Vitamina K 2/farmacología , Enfermedades Neuroinflamatorias , Secretasas de la Proteína Precursora del Amiloide , Metilación de ADN/genética , Epigénesis Genética , Interleucina-6 , Ácido Aspártico Endopeptidasas , Vitamina K , Neuroblastoma/genética , Línea Celular
3.
Anal Chem ; 94(45): 15558-15563, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318963

RESUMEN

The development of electrochemical strips, as extremely powerful diagnostic tools, has received much attention in the field of sensor analysis and, in particular, the detection of nucleic acids in complex matrixes is a hot topic in the electroanalytical area, especially when directed toward the development of emerging technologies, for the purpose of facilitating personal healthcare. One of the major diseases for which early diagnosis is crucial is represented by Alzheimer's disease (AD). AD is a progressive neurodegenerative disease, and it is the most common cause of dementia worldwide. In this context microRNAs (miRNAs), which are small noncoding RNAs, have recently been highlighted for their promising role as biomarkers for early diagnosis. In particular, miRNA-29 represents a class of miRNAs known to regulate pathogenesis of AD. In this work we developed an electrochemical printed strip for the detection of miRNA-29a at low levels. The architecture was characterized by the presence of gold nanoparticles (AuNPs) and an anti-miRNA-29a probe labeled with a redox mediator. The novel analytical tool has been characterized with microscale thermophoresis and electrochemical methods, and it has been optimized by selection of the most appropriate probe density to detect low target concentration. The present tool was capable to detect miRNA-29a both in standard solution and in serum, respectively, down to 0.15 and 0.2 nM. The platform highlighted good repeatability (calculated as the relative standard deviation) of ca. 10% and satisfactory selectivity in the presence of interfering species. This work has the objective to open a way for the study and possible early diagnosis of a physically and socially devastating disease such as Alzheimer's. The results demonstrate the suitability of this approach in terms of ease of use, time of production, sensitivity, and applicability.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Oro/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Nanopartículas del Metal/química , Biomarcadores , MicroARNs/análisis , Técnicas Biosensibles/métodos
4.
Biochimie ; 173: 12-16, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32061806

RESUMEN

The short, non-coding RNAs, also called microRNAs (miRNAs) can bind complementary sequences on cellular mRNAs. The consequence of this binding is generally the degradation of mRNA and the inhibition of its translation. For this reason, miRNAs are included among the epigenetic factors acting as a modulator of gene expression. How miRNAs expression is, in turn, regulated is still the object of active investigation, but DNA methylation, another epigenetic modification, seems to play a central role in this sense. The "one-carbon" metabolism is responsible for the metabolic regulation of trans-methylation reactions and, therefore, DNA methylation. For this reason, to investigate the possible correlations between alterations of the one-carbon metabolism and differential DNA methylation sounds interesting. Moreover, recent evidence indicates that, vice-versa, miRNAs are associated with DNA methylation modulation, in a mutual cross-talk. The present review will discuss the interplay between miRNAs and DNA methylation and its fall-out on gene expression regulation.


Asunto(s)
Metilación de ADN , ADN/química , Regulación de la Expresión Génica , MicroARNs/genética , Epigénesis Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...