Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theranostics ; 13(15): 5151-5169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908737

RESUMEN

Rationale: Despite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs). However, these vectors lack spatial selectivity for targeted gene delivery, a potentially critical limitation for delivering therapeutic doses in defined areas of the brain. The use of microbubbles, in conjunction with focused ultrasound (FUS), can enhance regional brain AAV transduction, but methods to assess transduction in vivo are needed. Methods: In a murine model, we combined positron emission tomography (PET) and optical imaging of reporter gene payloads to non-invasively assess the spatial distribution and transduction efficiency of systemically administered AAV9 after FUS and microbubble treatment. Capsid and reporter probe accumulation are reported as percent injected dose per cubic centimeter (%ID/cc) for in vivo PET quantification, whereas results for ex vivo assays are reported as percent injected dose per gram (%ID/g). Results: In a study spanning accumulation and transduction, mean AAV9 accumulation within the brain was 0.29 %ID/cc without FUS, whereas in the insonified region of interest of FUS-treated mice, the spatial mean and maximum reached ~2.3 %ID/cc and 4.3 %ID/cc, respectively. Transgene expression assessed in vivo by PET reporter gene imaging employing the pyruvate kinase M2 (PKM2)/[18F]DASA-10 reporter system increased up to 10-fold in the FUS-treated regions, as compared to mice receiving AAVs without FUS. Systemic injection of AAV9 packaging the EF1A-PKM2 transgene followed by FUS in one hemisphere resulted in 1) an average 102-fold increase in PKM2 mRNA concentration compared to mice treated with AAVs only and 2) a 12.5-fold increase in the insonified compared to the contralateral hemisphere of FUS-treated mice. Conclusion: Combining microbubbles with US-guided treatment facilitated a multi-hour BBB disruption and stable AAV transduction in targeted areas of the murine brain. This unique platform has the potential to provide insight and aid in the translation of AAV-based therapies for the treatment of neuropathologies.


Asunto(s)
Dependovirus , Tomografía Computarizada por Rayos X , Ratones , Animales , Dependovirus/genética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Tomografía de Emisión de Positrones , Vectores Genéticos
2.
Biomaterials ; 288: 121701, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985893

RESUMEN

The development of gene delivery vehicles with high organ specificity when administered systemically is a critical goal for gene therapy. We combine optical and positron emission tomography (PET) imaging of 1) reporter genes and 2) capsid tags to assess the temporal and spatial distribution and transduction of adeno-associated viruses (AAVs). AAV9 and two engineered AAV vectors (PHP.eB and CAP-B10) that are noteworthy for maximizing blood-brain barrier transport were compared. CAP-B10 shares a modification in the 588 loop with PHP.eB, but also has a modification in the 455 loop, added with the goal of reducing off-target transduction. PET and optical imaging revealed that the additional modifications retained brain receptor affinity. In the liver, the accumulation of AAV9 and the engineered AAV capsids was similar (∼15% of the injected dose per cc and not significantly different between capsids at 21 h). However, the engineered capsids were primarily internalized by Kupffer cells rather than hepatocytes, and liver transduction was greatly reduced. PET reporter gene imaging after engineered AAV systemic injection provided a non-invasive method to monitor AAV-mediated protein expression over time. Through comparison with capsid tagging, differences between brain localization and transduction were revealed. In summary, AAV capsids bearing imaging tags and reporter gene payloads create a unique and powerful platform to assay the pharmacokinetics, cellular specificity and protein expression kinetics of AAV vectors in vivo, a key enabler for the field of gene therapy.


Asunto(s)
Cápside , Dependovirus , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cápside/metabolismo , Dependovirus/genética , Vectores Genéticos , Hígado/diagnóstico por imagen , Imagen Multimodal , Transducción Genética
3.
Nucl Med Biol ; 98-99: 8-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33962357

RESUMEN

BACKGROUND: A novel [64Cu]Cu-NOTA-aCD40 immunoPET tracer was developed to image a CD40+ pancreatic tumor model in C57BL/6 mice and to study the biodistribution profile of the agonist CD40 (aCD40) monoclonal antibody (mAb) alone or combined with other mAbs. PROCEDURES: Copper-64 ([64Cu]Cu) labeled NOTA-aCD40 and NOTA-IgG (10 µg; 7 MBq) were injected intravenously into C57BL/6 mice with subcutaneous mT4 tumors to assess specificity 48 h post injection (p.i.) through positron emission tomography/computed tomography (PET/CT) imaging and biodistribution studies (n = 5). [64Cu]Cu-NOTA-aCD40 was injected alone or simultaneously in combination with a therapeutic mass of cold aCD40 (100 µg), aPD-1 (200 µg) and aCTLA-4 (200 µg) mAbs. A group of mice with or without tumor received the second round of injections 1 or 3 weeks apart, respectively. PET/CT imaging and biodistribution studies were performed at 48 h p.i. The organ dose for [64Cu]Cu was estimated based on biodistribution studies with 2 µg [64Cu]Cu-NOTA-aCD40 (corresponds to 5 mg patient dose) in non-tumor bearing mice. RESULTS: [64Cu]Cu-NOTA-aCD40 accumulation was 2.3- and 7.8-fold higher than [64Cu]Cu-NOTA-IgG in tumors and spleen, respectively, indicating the specificity of aCD40 mAb in a mouse pancreatic tumor model. Tumor accumulation of [64Cu]Cu-NOTA-aCD40 was 21.2 ± 7.3%ID/g at 48 h after injection. Co-injection of [64Cu]Cu-NOTA-aCD40 with cold aCD40 mAb alone or with PD-1 and CTLA-4 mAbs reduced both spleen and tumor uptake, whereas liver uptake was increased. With the second round of injections, the liver was the only organ with substantial uptake. With a 2 µg administered dose of [64Cu]Cu-NOTA-aCD40 in a dosimetry study, the liver to spleen ratio was greater compared to the 10 µg dose (2.8 vs 0.37; respectively). The human equivalent for the highest dose organ (liver) was 198 ± 28.7 µSv/MBq. CONCLUSIONS: A CD40-immunoreactive [64Cu]Cu-NOTA-aCD40 probe was developed. The ratio of spleen to liver accumulation exceeded that of the IgG isotype and was greatest with a single small, injected mass. The safety of human patient imaging with [64Cu]Cu was established based on extrapolation of the organ specificity to human imaging.


Asunto(s)
Anticuerpos Monoclonales , Animales , Humanos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
4.
J Control Release ; 330: 1080-1094, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33189786

RESUMEN

Resiquimod (R848) is a toll-like receptor 7 and 8 (TLR7/8) agonist with potent antitumor and immunostimulatory activity. However, systemic delivery of R848 is poorly tolerated because of its poor solubility in water and systemic immune activation. In order to address these limitations, we developed an intravenously-injectable formulation with R848 using thermosensitive liposomes (TSLs) as a delivery vehicle. R848 was remotely loaded into TSLs composed of DPPC: DSPC: DSPE-PEG2K (85:10:5, mol%) with 100 mM FeSO4 as the trapping agent inside. The final R848 to lipid ratio of the optimized R848-loaded TSLs (R848-TSLs) was 0.09 (w/w), 10-fold higher than the previously-reported values. R848-TSLs released 80% of R848 within 5 min at 42 °C. These TSLs were then combined with αPD-1, an immune checkpoint inhibitor, and ultrasound-mediated hyperthermia in a neu deletion (NDL) mouse mammary carcinoma model (Her2+, ER/PR negative). Combined with αPD-1, local injection of R848-TSLs showed superior efficacy with complete NDL tumor regression in both treated and abscopal sites achieved in 8 of 11 tumor bearing mice over 100 days. Immunohistochemistry confirmed enhanced CD8+ T cell infiltration and accumulation by R848-TSLs. Systemic delivery of R848-TSLs, combined with local hyperthermia and αPD-1, inhibited tumor growth and extended median survival from 28 days (non-treatment control) to 94 days. Upon re-challenge with reinjection of tumor cells, none of the previously cured mice developed tumors, as compared with 100% of age-matched control mice. The dose of R848 (10 µg for intra-tumoral injection or 6 mg/kg for intravenous injection delivered up to 4 times) was well-tolerated without weight loss or organ hypertrophy. In summary, we developed R848-TSLs that can be administered locally or systematically, resulting in tumor regression and enhanced survival when combined with αPD-1 in mouse models of breast cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Imidazoles , Inmunoterapia , Liposomas , Ratones , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...