Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(4): 1152-1164, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38467017

RESUMEN

While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.


Asunto(s)
Polímeros , Biosíntesis de Proteínas , Sistema Libre de Células , Biología Sintética/métodos , ADN/genética
2.
ACS Synth Biol ; 9(8): 1951-1957, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32646213

RESUMEN

Cell-free systems offer a powerful way to deliver biochemical activity to the field without cold chain storage. These systems are capable of sensing as well as biosynthesis of useful molecules at the point of need. So far, cell-free protein synthesis (CFPS) reactions have been studied as aqueous solutions in test tubes or absorbed into paper or cloth. Embedding biological functionality into broadly used materials, such as plastic polymers, represents an attractive goal. Unfortunately, this goal has for the most part remained out of reach, presumably due to the fragility of biological systems outside of aqueous environments. Here, we describe a surprising and useful feature of lyophilized cell-free lysate systems: tolerance to a variety of organic solvents. Screens of individual CFPS reagents and different CFPS methods reveal that solvent tolerance varies by CFPS reagent composition. Tolerance to suspension in organic solvents may facilitate the use of polymers to deliver dry cell-free reactions in the form of coatings or fibers, or allow dosing of analytes or substrates dissolved in nonaqueous solvents, among other processing possibilities.


Asunto(s)
Sistema Libre de Células , Solventes/química , Liofilización , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Orgánicos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...