Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenomes ; 5(4)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34968248

RESUMEN

In contrast to animals, adult organs in plants are not formed during embryogenesis but generated from meristematic cells as plants advance through development. Plant development involves a succession of different phenotypic stages and the transition between these stages is termed phase transition. Phase transitions need to be tightly regulated and coordinated to ensure they occur under optimal seasonal, environmental conditions. Polycarpic perennials transition through vegetative stages and the mature, reproductive stage many times during their lifecycles and, in both perennial and annual species, environmental factors and culturing methods can reverse the otherwise unidirectional vector of plant development. Epigenetic factors regulating gene expression in response to internal cues and external (environmental) stimuli influencing the plant's phenotype and development have been shown to control phase transitions. How developmental and environmental cues interact to epigenetically alter gene expression and influence these transitions is not well understood, and understanding this interaction is important considering the current climate change scenarios, since epigenetic maladaptation could have catastrophic consequences for perennial plants in natural and agricultural ecosystems. Here, we review studies focusing on the epigenetic regulators of the vegetative phase change and highlight how these mechanisms might act in exogenously induced plant rejuvenation and regrowth following stress.

2.
Sci Rep ; 10(1): 7794, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385328

RESUMEN

Fusarium head blight (FHB) is a severe disease of wheat (Triticum aestivum L.). Qfhb1 is the most important quantitative trait locus (QTL) for FHB resistance. We previously identified wheat gene WFhb1-1 (aka WFhb1-c1) as a candidate for FHB resistance gene. Here we report that WFhb1-1 has been cloned. The gene (GenBank # KU304333.1) consists of a single exon, encoding a putative membrane protein of 127 amino acids. WFhb1-1 protein produced in Pichia pastoris inhibits growth of both F. graminearum and P. pastoris in culture. Western Blotting with anti- WFhb1-1 antibody revealed a significant decrease (p < 0.01) in WFhb1-1 accumulation, 12 hours post Fusarium inoculation in non-Qfhb1-carrier wheat but not in Qfhb1-carrier wheat. Overexpressing WFhb1-1 in non-Qfhb1-carrier wheat led to a significant decrease (p < 0.01) in Fusarium-damaged rachis rate, Fusarium-diseased kernel rate and DON content in harvested kernels, while silencing WFhb1-1 in Qfhb1-carrier wheat resulted in a significant increase (p < 0.01) in FHB severity. Therefore, WFhb1-1 is an important FHB resistance gene with a potential antifungal function and probably a key functional component of Qfhb1 in wheat. A model regarding how WFhb1-1 functions in FHB resistance/susceptibility is hypothesized and discussed.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Sustitución de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN
3.
G3 (Bethesda) ; 9(5): 1393-1403, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30808689

RESUMEN

Perennialism is common among the higher plants, yet little is known about its inheritance. Previous genetic studies of the perennialism in Zea have yielded contradictory results. In this study, we take a reductionist approach by specifically focusing on one trait: regrowth (the plant's ability to restart a new life cycle after senescence on the same body). To address this, six hybrids were made by reciprocally crossing perennial Zea diploperennis Iltis, Doebley & R. Guzman with inbred lines B73 and Mo17 and Rhee Flint, a heirloom variety, of Zmays L. ssp. mays All the F1 plants demonstrated several cycles of growth, flowering, senescence and regrowth into normal flowering plants, indicating a dominant effect of the Z. diploperennis alleles. The regrowability (i.e., the plants' ability to regrow after senescence) was stably transmitted to progeny of the hybrids. Segregation ratios of regrowth in the F2 generations are consistent with the trait controlled by two dominant, complementary loci, but do not exclude the influence of other modifiers or environment. Genome-wide screening with genotyping-by-sequencing technology indicated two major regrowth loci, regrowth 1 (reg1) and regrowth 2 (reg2), were on chromosomes 2 and 7, respectively. These findings lay the foundation for further exploration of the molecular mechanism of regrowth in Z. diploperennis Importantly, our data indicate that there is no major barrier to transferring this trait into maize or other grass crops for perennial crop development with proper technology, which enhances sustainability of grain crop production in an environmentally friendly way.


Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica , Sitios de Carácter Cuantitativo , Zea mays/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Pruebas Genéticas , Genómica/métodos , Fenotipo , Desarrollo de la Planta/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...