Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0294123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241340

RESUMEN

The ability of soybean [Glycine max (L.) Merr.] to adapt to different latitudes is attributed to genetic variation in major E genes and quantitative trait loci (QTLs) determining flowering time (R1), maturity (R8), and reproductive length (RL). Fully revealing the genetic basis of R1, R8, and RL in soybeans is necessary to enhance genetic gains in soybean yield improvement. Here, we performed a genome-wide association analysis (GWA) with 31,689 single nucleotide polymorphisms (SNPs) to detect novel loci for R1, R8, and RL using a soybean panel of 329 accessions with the same genotype for three major E genes (e1-as/E2/E3). The studied accessions were grown in nine environments and observed for R1, R8 and RL in all environments. This study identified two stable peaks on Chr 4, simultaneously controlling R8 and RL. In addition, we identified a third peak on Chr 10 controlling R1. Association peaks overlap with previously reported QTLs for R1, R8, and RL. Considering the alternative alleles, significant SNPs caused RL to be two days shorter, R1 two days later and R8 two days earlier, respectively. We identified association peaks acting independently over R1 and R8, suggesting that trait-specific minor effect loci are also involved in controlling R1 and R8. From the 111 genes highly associated with the three peaks detected in this study, we selected six candidate genes as the most likely cause of R1, R8, and RL variation. High correspondence was observed between a modifying variant SNP at position 04:39294836 in GmFulb and an association peak on Chr 4. Further studies using map-based cloning and fine mapping are necessary to elucidate the role of the candidates we identified for soybean maturity and adaptation to different latitudes and to be effectively used in the marker-assisted breeding of cultivars with optimal yield-related traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Mapeo Cromosómico , Glycine max/genética , Desequilibrio de Ligamiento , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Plant Genome ; 16(1): e20308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744727

RESUMEN

Soybean is grown primarily for the protein and oil extracted from its seed and its value is influenced by these components. The objective of this study was to map marker-trait associations (MTAs) for the concentration of seed protein, oil, and meal protein using the soybean nested association mapping (SoyNAM) population. The composition traits were evaluated on seed harvested from over 5000 inbred lines of the SoyNAM population grown in 10 field locations across 3 years. Estimated heritabilities were at least 0.85 for all three traits. The genotyping of lines with single nucleotide polymorphism markers resulted in the identification of 107 MTAs for the three traits. When MTAs for the three traits that mapped within 5 cM intervals were binned together, the MTAs were mapped to 64 intervals on 19 of the 20 soybean chromosomes. The majority of the MTA effects were small and of the 107 MTAs, 37 were for protein content, 39 for meal protein, and 31 for oil content. For cases where a protein and oil MTAs mapped to the same interval, most (94%) significant effects were opposite for the two traits, consistent with the negative correlation between these traits. A coexpression analysis identified candidate genes linked to MTAs and 18 candidate genes were identified. The large number of small effect MTAs for the composition traits suggest that genomic prediction would be more effective in improving these traits than marker-assisted selection.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Genoma de Planta , Semillas/genética
4.
Theor Appl Genet ; 135(5): 1477-1491, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275253

RESUMEN

KEY MESSAGE: Efficiency of light interception, Radiation use efficiency and harvest index can be used as targets to improve grain yield potential in soybean. Grain yield (GY) production can be expressed as the result of three main efficiencies: light interception (Ei), radiation use (RUE), and harvest index (HI). Although dissecting GY through these three efficiencies is not entirely new, there is a lack of knowledge about the phenotypic variation, the genetic architecture, and the relative contribution of these three efficiencies on GY in soybean. This knowledge gap coupled with laborious phenotyping prevents the active consideration of these efficiencies into breeding programs. This study aims to reveal the phenotypic variation, heritability, genetic relationships, genetic architecture, and genomic prediction for Ei, RUE, and HI in soybean. We evaluated a maturity control panel of 383 Recombinant Inbred Lines (RILs) selected from the soybean nested association mapping (SoyNAM) population. Dry matter ground measured along with canopy coverage (CC) from UAS imagery were collected in three environments. Light interception was modeled through a logistic curve using CC as a proxy. The total above-ground biomass collected during the growing season and its respective cumulative light intercepted were used to derive RUE through linear models fitting. Additive-genetic correlations, genome-wide association (GWA) and whole-genome regressions (WGR) were performed to evaluate the relationship between traits, their association with genomic regions, and the feasibility of predicting these efficiencies with genomic information. Correlation analyses considered three groups: the entire data set, and the high- and low-yielding RILs to determine association as a function of the GY. Our results revealed moderate to high phenotypic variation for Ei, RUE, and HI with ranges of 8.5%, 1.1 g MJ-1, and 0.2, respectively. Additive-genetic correlation revealed a strong relationship of GY with HI and moderate with RUE and Ei when whole data set was considered, but negligible contribution of HI on GY when just the top 100 was analyzed. The GWA analyses showed that Ei is associated with three SNPs; two of them located on chromosome 7 and one on chromosome 11 with no previous quantitative trait loci (QTLs) reported for these regions. RUE is associated with four SNPs on chromosomes 1, 7, 11, and 18. Some of these QTLs are novel, while others are previously documented for plant architecture and chlorophyll content. Two SNPs positioned on chromosome 13 and 15 with previous QTLs reported for plant height and seed set, weight and abortion were associated with HI. WGR showed high predictive ability for Ei, RUE, and HI with maximum correlation ranging between 0.75 and 0.80. Future improvements in GY can be expected through strategies prioritizing Ei for short-term results when using high yielding germplasm and RUE for medium- and long-term outcomes. This work is a pioneer attempt to integrate traditional physiological traits into the breeding process in the context of physiological breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética
5.
Front Plant Sci ; 12: 715983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539708

RESUMEN

Understanding temporal accumulation of soybean above-ground biomass (AGB) has the potential to contribute to yield gains and the development of stress-resilient cultivars. Our main objectives were to develop a high-throughput phenotyping method to predict soybean AGB over time and to reveal its temporal quantitative genomic properties. A subset of the SoyNAM population (n = 383) was grown in multi-environment trials and destructive AGB measurements were collected along with multispectral and RGB imaging from 27 to 83 days after planting (DAP). We used machine-learning methods for phenotypic prediction of AGB, genomic prediction of breeding values, and genome-wide association studies (GWAS) based on random regression models (RRM). RRM enable the study of changes in genetic variability over time and further allow selection of individuals when aiming to alter the general response shapes over time. AGB phenotypic predictions were high (R 2 = 0.92-0.94). Narrow-sense heritabilities estimated over time ranged from low to moderate (from 0.02 at 44 DAP to 0.28 at 33 DAP). AGB from adjacent DAP had highest genetic correlations compared to those DAP further apart. We observed high accuracies and low biases of prediction indicating that genomic breeding values for AGB can be predicted over specific time intervals. Genomic regions associated with AGB varied with time, and no genetic markers were significant in all time points evaluated. Thus, RRM seem a powerful tool for modeling the temporal genetic architecture of soybean AGB and can provide useful information for crop improvement. This study provides a basis for future studies to combine phenotyping and genomic analyses to understand the genetic architecture of complex longitudinal traits in plants.

6.
Front Plant Sci ; 12: 651241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33903802

RESUMEN

Soybean grain yield has steadily increased during the last century because of enhanced cultivars and better agronomic practices. Increases in the total biomass, shorter cultivars, late maturity, and extended seed-filling period are frequently reported as main contributors for better soybean performance. However, there are still processes associated with crop physiology to be improved. From the theoretical standpoint, yield is the product of efficiency of light interception (Ei), radiation use efficiency (RUE), and harvest index (HI). The relative contribution of these three parameters on the final grain yield (GY), their interrelation with other phenological-physiological traits, and their environmental stability have not been well established for soybean. In this study, we determined the additive-genetic relationship among 14 physiological and phenological traits including photosynthesis (A) and intrinsic water use efficiency (iWUE) in a panel of 383 soybean recombinant inbred lines (RILs) through direct (path analyses) and indirect learning methods [least absolute shrinkage and selection operator (LASSO) algorithm]. We evaluated the stability of Ei, RUE, and HI through the slope from the Finley and Wilkinson joint regression and the genetic correlation between traits evaluated in different environments. Results indicate that both supervised and unsupervised methods effectively establish the main relationships underlying changes in Ei, RUE, HI, and GY. Variations in the average growth rate of canopy coverage for the first 40 days after planting (AGR40) explain most of the changes in Ei. RUE is primarily influenced by phenological traits of reproductive length (RL) and seed-filling (SFL) as well as iWUE, light extinction coefficient (K), and A. HI showed a strong relationship with A, AGR40, SFL, and RL. According to the path analysis, an increase in one standard unit of HI promotes changes in 0.5 standard units of GY, while changes in the same standard unit of RUE and Ei produce increases on GY of 0.20 and 0.19 standard units, respectively. RUE, Ei, and HI exhibited better environmental stability than GY, although changes associated with year and location showed a moderate effect in Ei and RUE, respectively. This study brings insight into a group of traits involving A, iWUE, and RL to be prioritized during the breeding process for high-yielding cultivars.

7.
Plant Methods ; 15: 139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827576

RESUMEN

BACKGROUND: In the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure secondary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time and most efficiently soybean lines with high yield potential. Soybean average canopy coverage (ACC), measured by unmanned aerial systems (UAS), is highly heritable, with a high genetic correlation with yield. The objective of this study was to compare the direct selection for yield with indirect selection using ACC and using ACC as a covariate in the yield prediction model (Yield|ACC) in early stages of soybean breeding. In 2015 and 2016 we grew progeny rows (PR) and collected yield and days to maturity (R8) in a typical way and canopy coverage using a UAS carrying an RGB camera. The best soybean lines were then selected with three parameters, Yield, ACC and Yield|ACC, and advanced to preliminary yield trials (PYT). RESULTS: We found that for the PYT in 2016, after adjusting yield for R8, there was no significant difference among the mean performances of the lines selected based on ACC and Yield. In the PYT in 2017 we found that the highest yield mean was from the lines directly selected for yield, but it may be due to environmental constraints in the canopy growth. Our results indicated that PR selection using Yield|ACC selected the most top-ranking lines in advanced yield trials. CONCLUSIONS: Our findings emphasize the value of aerial HTP platforms for early stages of plant breeding. Though ACC selection did not result in the best performance lines in the second year of selections, our results indicate that ACC has a role in the effective selection of high-yielding soybean lines.

8.
Front Plant Sci ; 10: 680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178887

RESUMEN

Photosynthesis (A) and intrinsic water use efficiency (WUE) are physiological traits directly influencing biomass production, conversion efficiency, and grain yield. Though the influence of physiological process on yield is widely known, studies assessing improvement strategies are rare due to laborious phenotyping and specialized equipment needs. This is one of the first studies to assess the genetic architecture underlying A and intrinsic WUE, as well as to evaluate the feasibility of implementing genomic prediction. A panel of 383 soybean recombinant inbred lines were evaluated in a multi-environment yield trial that included measurements of A and intrinsic WUE, using an infrared gas analyzer during R4-R5 growth stages. Genetic variability was found to support the possibility of genetic improvement through breeding. High genetic correlation between grain yield (GY) and A (0.80) was observed, suggesting increases in GY can be achieved through the improvement of A. Genome-wide association analysis revealed quantitative trait loci (QTLs) for these physiological traits. Cross-validation studies indicated high predictive ability (>0.65) for the implementation of genomic prediction as a viable strategy to improve physiological efficiency while reducing field phenotyping. This work provides core knowledge to develop new soybean cultivars with enhanced photosynthesis and water use efficiency through conventional breeding and genomic techniques.

9.
G3 (Bethesda) ; 8(10): 3367-3375, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30131329

RESUMEN

Soybean is the world's leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding.


Asunto(s)
Glycine max/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Genética de Población , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple
10.
11.
BMC Bioinformatics ; 18(1): 191, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340551

RESUMEN

BACKGROUND: Genome-wide assisted selection is a critical tool for the genetic improvement of plants and animals. Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting such models with a large number of observations involves a prohibitive computational burden. We propose the use of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome regression models by subsampling observations in each round of a Markov Chain Monte Carlo. We evaluated the effect of subsampling bootstrap on prediction and computational parameters. RESULTS: Across datasets, we observed an optimal subsampling proportion of observations around 50% with replacement, and around 33% without replacement. Subsampling provided a substantial decrease in computation time, reducing the time to fit the model by half. On average, losses on predictive properties imposed by subsampling were negligible, usually below 1%. For each dataset, an optimal subsampling point that improves prediction properties was observed, but the improvements were also negligible. CONCLUSION: Combining subsampling with Gibbs sampling is an interesting ensemble algorithm. The investigation indicates that the subsampling bootstrap Markov chain algorithm substantially reduces computational burden associated with model fitting, and it may slightly enhance prediction properties.


Asunto(s)
Teorema de Bayes , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Animales , Humanos , Muestreo
12.
Theor Appl Genet ; 129(10): 1933-49, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27435734

RESUMEN

KEY MESSAGE: The main statistical procedures in plant breeding are based on Gaussian process and can be computed through mixed linear models. Intelligent decision making relies on our ability to extract useful information from data to help us achieve our goals more efficiently. Many plant breeders and geneticists perform statistical analyses without understanding the underlying assumptions of the methods or their strengths and pitfalls. In other words, they treat these statistical methods (software and programs) like black boxes. Black boxes represent complex pieces of machinery with contents that are not fully understood by the user. The user sees the inputs and outputs without knowing how the outputs are generated. By providing a general background on statistical methodologies, this review aims (1) to introduce basic concepts of machine learning and its applications to plant breeding; (2) to link classical selection theory to current statistical approaches; (3) to show how to solve mixed models and extend their application to pedigree-based and genomic-based prediction; and (4) to clarify how the algorithms of genome-wide association studies work, including their assumptions and limitations.


Asunto(s)
Fitomejoramiento/métodos , Plantas/genética , Estadística como Asunto , Algoritmos , Alelos , Genómica/métodos , Modelos Lineales , Modelos Genéticos , Distribución Normal , Fenotipo , Selección Genética
13.
G3 (Bethesda) ; 6(8): 2611-6, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27317786

RESUMEN

Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.


Asunto(s)
Genómica/métodos , Glycine max/genética , Fitomejoramiento/métodos , Genética de Población , Genoma de Planta , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Densidad de Población , Sitios de Carácter Cuantitativo
14.
Bioinformatics ; 31(23): 3862-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26243017

RESUMEN

MOTIVATION: Mixed linear models provide important techniques for performing genome-wide association studies. However, current models have pitfalls associated with their strong assumptions. Here, we propose a new implementation designed to overcome some of these pitfalls using an empirical Bayes algorithm. RESULTS: Here we introduce NAM, an R package that allows user to take into account prior information regarding population stratification to relax the linkage phase assumption of current methods. It allows markers to be treated as a random effect to increase the resolution, and uses a sliding-window strategy to increase power and avoid double fitting markers into the model. AVAILABILITY AND IMPLEMENTATION: NAM is an R package available in the CRAN repository. It can be installed in R by typing install.packages ('NAM'). CONTACT: krainey@purdue.edu. SUPPLEMENTARY INFORMATION: Supplementary date are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Programas Informáticos , Algoritmos , Teorema de Bayes , Ligamiento Genético , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...