Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(23): e2203965119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648829

RESUMEN

During developmental critical periods, circuits are sculpted by a process of activity-dependent competition. The molecular machinery involved in regulating the complex process of responding to different levels of activity is now beginning to be identified. Here, we show that the nonclassical major histocompatibility class I (MHCI) molecule Qa-1 is expressed in the healthy brain in layer 6 corticothalamic neurons. In the visual cortex, Qa-1 expression begins during the critical period for ocular dominance (OD) plasticity and is regulated by neuronal activity, suggesting a role in regulating activity-dependent competition. Indeed, in mice lacking Qa-1, OD plasticity is perturbed. Moreover, signaling through CD94/NKG2, a known cognate Qa-1 heterodimeric receptor in the immune system, is implicated: selectively targeting this interaction phenocopies the plasticity perturbation observed in Qa-1 knockouts. In the cortex, CD94/NKG2 is expressed by microglial cells, which undergo activity-dependent changes in their morphology in a Qa-1­dependent manner. Our study thus reveals a neuron­microglial interaction dependent upon a nonclassical MHCI molecule expressed in L6 neurons, which regulates plasticity in the visual cortex. These results also point to an unexpected function for the Qa-1/HLA-E (ligand) and CD94/NKG2 (receptor) interaction in the nervous system, in addition to that described in the immune system.


Asunto(s)
Corteza Cerebral , Antígenos de Histocompatibilidad Clase I , Microglía , Subfamília C de Receptores Similares a Lectina de Células NK , Subfamília D de Receptores Similares a Lectina de las Células NK , Plasticidad Neuronal , Animales , Corteza Cerebral/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo
2.
Neuron ; 109(20): 3298-3311.e4, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34437845

RESUMEN

Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB-/-). Pyramidal neuron dendrites in PirB-/- mice have increased spine formation rates and density. Surprisingly, PirB-/- mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB-/- mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.


Asunto(s)
Espinas Dendríticas , Aprendizaje/fisiología , Corteza Motora/metabolismo , Destreza Motora/fisiología , Plasticidad Neuronal/genética , Células Piramidales/metabolismo , Receptores Inmunológicos/genética , Animales , Ratones , Ratones Noqueados , Corteza Motora/citología , Receptores de N-Metil-D-Aspartato
3.
Elife ; 52016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779093

RESUMEN

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.


Asunto(s)
Conducta Animal , Trastornos del Neurodesarrollo/fisiopatología , Sinapsis/fisiología , Animales , Trastorno Autístico/fisiopatología , Corteza Cerebral/embriología , Técnicas de Silenciamiento del Gen , Hipocampo/embriología , Discapacidad Intelectual/fisiopatología , Factores de Transcripción MEF2/metabolismo , Ratones
4.
Bioorg Med Chem Lett ; 24(8): 2002-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24581919

RESUMEN

Metalloproteases regulate a vast array of critical cellular processes such as proliferation, migration, repair, and invasion/metastasis. In so doing, metalloproteases have been shown to play key roles in the pathogenesis of multiple disorders including arteriosclerosis, arthritis, cancer metastasis, and ischemic brain injury. Therefore, much work has focused on developing metalloprotease inhibitors to provide a potential therapeutic benefit against the progression of these and other diseases. In order to produce a more potent inhibitor of metalloproteases, we synthesized multivalent displays of a metalloprotease inhibitor derived from the ring-opening metathesis polymerization (ROMP). Specifically, multivalent ligands of a broad-spectrum metalloprotease inhibitor, TAPI-2, were generated upon conjugation of the amine-bearing inhibitor with the ROMP-derived N-hydroxysuccinimide ester polymer. By monitoring the metalloprotease dependent cleavage of the transmembrane protein Semaphorin4D (Sema4D), we demonstrated an enhancement of inhibition by multivalent TAPI-2 compared to monovalent TAPI-2. To further optimize the potency of the multivalent inhibitor, we systematically varied the polymer length and inhibitor ligand density (mole fraction, χ). We observed that while ligand density plays a modest role in the potency of inhibition caused by the multivalent TAPI-2 display, the length of the polymer produces a much greater effect on inhibitor potency, with the shortest polymer achieving the greatest level of inhibition. These findings validate the use of multivalent display to enhance the potency of metalloprotease inhibitors and further, suggest this may be a useful approach to enhance potency of other small molecule towards their targets.


Asunto(s)
Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Metaloproteasas/antagonistas & inhibidores , Western Blotting , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , Semaforinas/metabolismo
5.
Mol Cell Neurosci ; 57: 23-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24036351

RESUMEN

While numerous recent advances have contributed to our understanding of excitatory synapse formation, the processes that mediate inhibitory synapse formation remain poorly defined. Previously, we discovered that RNAi-mediated knockdown of a Class 4 Semaphorin, Sema4D, led to a decrease in the density of inhibitory synapses without an apparent effect on excitatory synapse formation. Our current work has led us to new insights about the molecular mechanisms by which Sema4D regulates GABAergic synapse development. Specifically, we report that the extracellular domain of Sema4D is proteolytically cleaved from the surface of neurons. However, despite this cleavage event, Sema4D signals through its extracellular domain as a membrane-bound, synaptically localized protein required in the postsynaptic membrane for proper GABAergic synapse formation. Thus, as Sema4D is one of only a few molecules identified thus far that preferentially regulates GABAergic synapse formation, these findings have important implications for our mechanistic understanding of this process.


Asunto(s)
Antígenos CD/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Semaforinas/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Membrana Celular/metabolismo , Neuronas GABAérgicas/citología , Hipocampo/citología , Hipocampo/embriología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , Ratas , Ratas Long-Evans , Semaforinas/química
6.
J Neurosci ; 29(14): 4498-511, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19357275

RESUMEN

Neuronal activity largely depends on two key components on the membrane: the Na,K-ATPase (NKA) that maintains the ion gradients and sets the foundation of excitability, and the ionotropic glutamatergic AMPA receptors (AMPARs) through which sodium influx forms the driving force for excitation. Because the frequent sodium transients from glutamate receptor activity need to be efficiently extruded, a functional coupling between NKA and AMPARs should be a necessary cellular device for synapse physiology. We show that NKA is enriched at synapses and associates with AMPARs. NKA dysfunction induces a rapid reduction in AMPAR cell-surface expression as well as total protein abundance, leading to a long-lasting depression in synaptic transmission. AMPAR proteolysis requires sodium influx, proteasomal activity and receptor internalization. These data elucidate a novel mechanism by which NKA regulates AMPAR turnover and thereby synaptic strength and brain function.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/fisiología , Receptores AMPA/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células Cultivadas , Hidrólisis , Ouabaína/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Receptores AMPA/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Sinapsis/enzimología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...