Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Avian Med Surg ; 32(3): 173-184, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30204017

RESUMEN

To further knowledge of the physiology of opioid receptors in birds, the structure and expression of the µ-, δ-, and κ-opioid receptor genes were studied in a peregrine falcon ( Falco peregrinus), a snowy owl ( Bubo scandiacus), and a blue-fronted Amazon parrot ( Amazona aestiva). Tissue samples were obtained from birds that had been euthanatized for poor release prognosis or medical reasons. Samples were taken from the brain (telencephalon, thalamus, pituitary gland, cerebellum, pons, medulla oblongata, mesencephalon), the spinal cord and dorsal root ganglions, and plantar foot skin. Messenger RNA was recovered, and reverse transcription polymerase chain reaction (RT-PCR) was performed to generate complementary DNA (cDNA) sequences. Gene structures were documented by directly comparing cDNA sequences with recently published genomic sequences for the peregrine falcon and the blue-fronted Amazon parrot or by comparisons with genomic sequences of related species for the snowy owl. Structurally, the avian µ-opioid receptor messenger RNA (mRNA) species were complex, displaying differential splicing, alternative stop codons, and multiple polyadenylation signals. In comparison, the structure of the avian κ-receptor mRNA was relatively simple. In contrast to what is seen in humans, the avian δ-receptor mRNA structure was found to be complex, demonstrating novel 3-prime coding and noncoding exons not identified in mammals. The role of the δ-opioid receptor merits further investigation in avian species.


Asunto(s)
Amazona/metabolismo , Falconiformes/metabolismo , Receptores Opioides/metabolismo , Estrigiformes/metabolismo , Amazona/genética , Animales , Falconiformes/genética , Femenino , Variación Genética , Masculino , Receptores Opioides/genética , Especificidad de la Especie , Estrigiformes/genética
2.
PLoS Genet ; 11(3): e1005093, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25786024

RESUMEN

Neural crest cells (NCC) are a transient migratory cell population that generates diverse cell types such as neurons and glia of the enteric nervous system (ENS). Via an insertional mutation screen for loci affecting NCC development in mice, we identified one line-named TashT-that displays a partially penetrant aganglionic megacolon phenotype in a strong male-biased manner. Interestingly, this phenotype is highly reminiscent of human Hirschsprung's disease, a neurocristopathy with a still unexplained male sex bias. In contrast to the megacolon phenotype, colonic aganglionosis is almost fully penetrant in homozygous TashT animals. The sex bias in megacolon expressivity can be explained by the fact that the male ENS ends, on average, around a "tipping point" of minimal colonic ganglionosis while the female ENS ends, on average, just beyond it. Detailed analysis of embryonic intestines revealed that aganglionosis in homozygous TashT animals is due to slower migration of enteric NCC. The TashT insertional mutation is localized in a gene desert containing multiple highly conserved elements that exhibit repressive activity in reporter assays. RNAseq analyses and 3C assays revealed that the TashT insertion results, at least in part, in NCC-specific relief of repression of the uncharacterized gene Fam162b; an outcome independently confirmed via transient transgenesis. The transcriptional signature of enteric NCC from homozygous TashT embryos is also characterized by the deregulation of genes encoding members of the most important signaling pathways for ENS formation-Gdnf/Ret and Edn3/Ednrb-and, intriguingly, the downregulation of specific subsets of X-linked genes. In conclusion, this study not only allowed the identification of Fam162b coding and regulatory sequences as novel candidate loci for Hirschsprung's disease but also provides important new insights into its male sex bias.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Ratones , Mutagénesis Insercional , Animales , Cromosomas de los Mamíferos , Sistema Nervioso Entérico/anomalías , Enfermedad de Hirschsprung/embriología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/metabolismo , Elementos Silenciadores Transcripcionales , Transcriptoma
3.
Dev Dyn ; 241(7): 1192-204, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22539273

RESUMEN

BACKGROUND: The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS: Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION: We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.


Asunto(s)
Blastocisto/metabolismo , Proteína de la Región Y Determinante del Sexo/metabolismo , Animales , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Embarazo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Porcinos
4.
Dev Dyn ; 235(3): 623-32, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16411204

RESUMEN

Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid-diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5' flanking sequences. Human SRY 5' flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5' flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5' flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5' flanking sequences (-3 to -1 Kb) were placed in front of the 1.6 Kb of pig SRY 5' flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5' flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5' flanking sequences can extinguish this expression.


Asunto(s)
Región de Flanqueo 5'/genética , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas/genética , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo/genética , Porcinos/genética , Animales , Movimiento Celular/genética , Femenino , Genes Reporteros , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Cresta Neural/citología , Cresta Neural/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...