Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Front Neurosci ; 17: 1223733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638323

RESUMEN

Background: Pulmonary hypertension (PH), characterized by elevated pulmonary pressure and right heart failure, is a systemic disease involving inappropriate sympathetic activation and an impaired gut-brain-lung axis. Global overexpression of angiotensin converting enzyme 2 (ACE2), a cardiopulmonary protective enzyme of the renin-angiotensin system, attenuates PH induced by chronic hypoxia. Neurons within the paraventricular nucleus of the hypothalamus (PVN) that synthesize corticotropin-releasing hormone (CRH) are activated by stressors, like hypoxia, and this activation augments sympathetic outflow to cardiovascular tissues. These data coupled with our observations that ACE2 overexpression in CRH cells (CRH-ACE2KI mice) decreases anxiety-like behavior via suppression of hypothalamic-pituitary-adrenal (HPA) axis activity by decreasing CRH synthesis, led us to hypothesize that selective ACE2 overexpression in CRH neurons would protect against hypoxia-induced PH. Methods: CRH-ACE2KI and WT male and female mice were exposed to chronic hypoxia (10%O2) or normoxia (21%O2) for 4 weeks in a ventilated chamber with continuous monitoring of oxygen and carbon dioxide concentrations (n = 7-10/group). Pulmonary hemodynamics were measured with Millar pressure catheters then tissues were collected for histological analyses. Results: Chronic hypoxia induced a significant increase (36.4%) in right ventricular (RV) systolic pressure (RVSP) in WT mice, which was not observed in CRH-ACE2KI mice. No significant differences in RVSP were observed between male and female mice in any of the groups. Conclusion: Overexpression of ACE2 in CRH cells was protective against hypoxia-induced PH. Since the majority of expression of CRH is in brain nuclei such as paraventricular nucleus of the hypothalamus (PVN) and/or central nucleus of the amygdala (CeA) these data indicate that the protective effects of ACE2 are, at least in part, centrally mediated. This contributes to the systemic nature of PH disease and that CRH neurons may play an important role in PH.

2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768972

RESUMEN

Hypertension (HTN) is associated with gut dysbiosis and the depletion of butyrate-producing bacteria in animal models and people. Furthermore, fecal material transfer from donor hypertensive patients increases blood pressure in normotensive recipient animals and ameliorates HTN-associated pathophysiology. These observations have implications in the impaired interactions between the gut and gut microbiota in HTN. Although this concept is supported in animal models, little is known about human HTN. Therefore, our objective for this study was to compare gene expression with transcriptomics and its potential to influence microbiota in subjects with normal and high blood pressure (HBP). Colon samples from reference subjects with normal blood pressure (REF) and HBP were used for RNA-seq to analyze their transcriptomes. We observed the significant downregulation of gene sets governing immune responses (e.g., SGK1 and OASL), gut epithelial function (e.g., KRT20 and SLC9A3R1), gut microbiota (e.g., PPARG and CIDEC) and genes associated with cardiovascular and gut diseases (e.g., PLAUR and NLN) in HBP subjects; the expression of genes within these pathways correlated with blood pressure. Potential drug targets in the gut epithelium were identified using the Drug Gene International Database for possible use in HTN. They include peroxisome proliferator-activated receptor gamma (PPRG), active serum/glucocorticoid regulated kinase 1 (SGK1) and 3 beta-hydroxysteroid isomerase type II inhibitor (HSD3B). Finally, butyrate, a microbiota-derived short-chain fatty acid, restored the disrupted expression of certain functional genes in colonic organoids from HBP subjects. Patients with HBP exhibit a unique transcriptome that could underlie impaired gut-microbiota interactions. Targeting these interactions could provide a promising new therapeutic intervention for hypertension management.


Asunto(s)
Butiratos , Hipertensión , Animales , Humanos , Butiratos/metabolismo , Presión Sanguínea/genética , Colon/metabolismo , Expresión Génica , Disbiosis/complicaciones
3.
J Am Heart Assoc ; 12(4): e027918, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752270

RESUMEN

Background Hypertension is associated with gut dysbiosis, altered intestinal immunity, and gut pathology in animal models and humans. Although these findings have implicated impaired interactions between gut and gut microbiota in hypertension, little is known about the specific functional gut microbes that interact with intestinal mucosa. Methods and Results To identify these microbes, we sorted Immunoglobin A (IgA)-coated (IgA+) and IgA-noncoated (IgA-) bacteria using a combination of magnetic-activated cell sorting and fluorescence-activated cell sorting, and subsequently performed 16 S rRNA gene sequencing (IgA-SEQ) to determine the microbial composition of IgA+ and IgA- fractions in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats. We observed a significant decrease in IgA+ bacteria in SHR compared with Wistar Kyoto and a distinct composition of IgA+ and IgA- bacteria between Wistar Kyoto and SHR, showing more IgA-bound Proteobacteria, Bacteroidetes and Actinobacteria but less of Firmicutes in SHR at the phylum level. We further identified enriched IgA-coated Romboutsia, Turicibacter, Ileibacterium, and Dubosiella in SHR that were negatively correlated with the various pathways including antigen presentation, immune response, cell junction organization, epithelium development, and defense response to virus. Conclusions We demonstrate new IgA-coated bacteria that participate in host-microbiota communication in hypertension, suggesting promising therapeutic interventions targeting these bacteria for hypertension management.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Microbiota , Ratas , Humanos , Animales , Ratas Endogámicas SHR , Microbioma Gastrointestinal/fisiología , Ratas Endogámicas WKY , Bacterias , Inmunoglobulina A/uso terapéutico
4.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36448480

RESUMEN

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Asunto(s)
Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Hiperglucemia , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Retinopatía Diabética/prevención & control , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/complicaciones , Inflamación/metabolismo , Intestino Delgado , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/fisiología
5.
Am Heart J Plus ; 362023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222308

RESUMEN

Minocycline, an anti-inflammatory antibiotic drug, rebalances impaired gut microbiota, attenuates neuroinflammation and lowers high blood pressure in animal models of hypertension and in hypertensive patients. Our objective in this study was to investigate if antihypertensive effects of minocycline involve the expression of gut epithelial genes relevant to blood pressure homeostasis using human colonic 3-dimensional organoid culture and high-throughput RNA sequencing. The data demonstrates that minocycline could restore impaired expression of functional genes linked to viral and bacterial immunity, inflammation, protein trafficking and autophagy in human hypertensive organoids.

6.
Hypertension ; 79(8): 1591-1601, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35538603

RESUMEN

BACKGROUND: Despite the availability of various classes of antihypertensive medications, a large proportion of hypertensive individuals remain resistant to treatments. The reason for what contributes to low efficacy of antihypertensive medications in these individuals is elusive. The knowledge that gut microbiota is involved in pathophysiology of hypertension and drug metabolism led us to hypothesize that gut microbiota catabolize antihypertensive medications and compromised their blood pressure (BP)-lowering effects. METHODS AND RESULTS: To test this hypothesis, we examined the BP responses to a representative ACE (angiotensin-converting enzyme) inhibitor quinapril in spontaneously hypertensive rats (SHR) with or without antibiotics. BP-lowering effect of quinapril was more pronounced in the SHR+antibiotics, indicating that gut microbiota of SHR lowered the antihypertensive effect of quinapril. Depletion of gut microbiota in the SHR+antibiotics was associated with decreased gut microbial catabolism of quinapril as well as significant reduction in the bacterial genus Coprococcus. C. comes, an anaerobic species of Coprococcus, harbored esterase activity and catabolized the ester quinapril in vitro. Co-administration of quinapril with C. comes reduced the antihypertensive effect of quinapril in the SHR. Importantly, C. comes selectively reduced the antihypertensive effects of ester ramipril but not nonester lisinopril. CONCLUSIONS: Our study revealed a previously unrecognized mechanism by which human commensal C. comes catabolizes ester ACE inhibitors in the gut and lowers its antihypertensive effect.


Asunto(s)
Hipertensión , Tetrahidroisoquinolinas , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea , Ésteres/farmacología , Ésteres/uso terapéutico , Humanos , Quinapril , Ratas , Ratas Endogámicas SHR , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/uso terapéutico
7.
Pulm Circ ; 12(1): e12015, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35506083

RESUMEN

Recent evidence suggests pulmonary hypertension (PH), a disease of the pulmonary vasculature actually has multiorgan pathophysiology and perhaps etiology. Herein, we demonstrated that fecal matter transplantation from angiotensin-converting enzyme 2 overexpressing mice counteracted the effects of chronic hypoxia to prevent pulmonary hypertension, neuroinflammation, and gut dysbiosis in wild type recipients.

8.
Circ Res ; 130(3): 401-417, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35113664

RESUMEN

Hypertension is a worldwide problem with major impacts on health including morbidity and mortality, as well as consumption of health care resources. Nearly 50% of American adults have high blood pressure, and this rate is rising. Even with multiple antihypertensive drugs and aggressive lifestyle modifications, blood pressure is inadequately controlled in about 1 of 5 hypertensive individuals. This review highlights a hypothesis for hypertension that suggests alternative mechanisms for blood pressure elevation and maintenance. A better understanding of these mechanisms could open avenues for more successful treatments. The hypothesis accounts for recent understandings of the involvement of gut physiology, gut microbiota, and neuroinflammation in hypertension. It includes bidirectional communication between gut microbiota and gut epithelium in the gut-brain axis that is involved in regulation of autonomic nervous system activity and blood pressure control. Dysfunction of this gut-brain axis, including dysbiosis of gut microbiota, gut epithelial dysfunction, and deranged input to the brain, contributes to hypertension via inflammatory mediators, metabolites, bacteria in the circulation, afferent information alterations, etc resulting in neuroinflammation and unbalanced autonomic nervous system activity that elevates blood pressure. This in turn negatively affects gut function and its microbiota exacerbating the problem. We focus this review on the gut-brain axis hypothesis for hypertension and possible contribution to racial disparities in hypertension. A novel idea, that immunoglobulin A-coated bacteria originating in the gut with access to the brain could be involved in hypertension, is raised. Finally, minocycline, with its anti-inflammatory and antimicrobial properties, is evaluated as a potential antihypertensive drug acting on this axis.


Asunto(s)
Eje Cerebro-Intestino , Microbioma Gastrointestinal , Hipertensión/microbiología , Animales , Humanos , Hipertensión/fisiopatología
10.
Cells ; 10(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204247

RESUMEN

Hypertension is associated with gut bacterial dysbiosis and gut pathology in animal models and people. Butyrate-producing gut bacteria are decreased in hypertension. RNA-seq analysis of gut colonic organoids prepared from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to test the hypothesis that impaired interactions between the gut microbiome and gut epithelium are involved and that these would be remediated with butyrate supplementation. Gene expressions in immune responses including antigen presentation and antiviral pathways were decreased in the gut epithelium of the SHR in organoids and confirmed in vivo; these deficits were corrected by butyrate supplementation. Deficits in gene expression driving epithelial proliferation and differentiation were also observed in SHR. These findings highlight the importance of aligned interactions of the gut microbiome and gut immune responses to blood pressure homeostasis.


Asunto(s)
Colon/microbiología , Disbiosis , Microbioma Gastrointestinal/fisiología , Hipertensión/microbiología , Animales , Butiratos/farmacología , Colon/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Organoides , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transcriptoma
11.
Int J Cardiol ; 338: 196-203, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126132

RESUMEN

BACKGROUND: Ischemic heart disease and the resulting heart failure continue to carry high morbidity and mortality, and a breakthrough in our understanding of this disorder is needed. The adult spiny mouse (Acomys cahirinus) has evolved the remarkable capacity to regenerate full-thickness skin tissue, including microvasculature and cartilage, without fibrosis or scarring. We hypothesized that lack of scarring and resulting functional regeneration also applies to the adult Acomys heart. METHODS AND RESULTS: We compared responses of the Acomys heart to CD1 outbred Mus heart following acute left anterior descending coronary artery ligation to induce myocardial infarction. Both Acomys and Mus hearts showed decreased ejection fraction (EF) after ligation. However, Acomys hearts showed significant EF recovery to pre-ligation values over four weeks. Histological analysis showed comparable infarct area 24-h after ligation with a similar collateral flow in both species' hearts, but subsequently, Acomys displayed reduced infarct size, regenerated microvasculature, and increased cell proliferative activity in the infarcted area. CONCLUSIONS: These observations suggest that adult Acomys displays remarkable cardiac recovery properties after acute coronary artery occlusion and may be a useful model to understand functional recovery better. TRANSLATIONAL PERSPECTIVE: Adult Acomys provides a novel mammalian model to further investigate the cardioprotective and regenerative signaling mechanisms in adult mammals. This opens the door to breakthrough treatment strategies for the injured myocardium and help millions of patients with heart failure secondary to tissue injury with irreversible damage.


Asunto(s)
Regeneración , Piel , Adulto , Animales , Cicatriz , Fibrosis , Humanos , Murinae , Piel/patología
12.
Am Heart J ; 239: 27-37, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984318

RESUMEN

BACKGROUND: Hypertension (HTN) is frequently linked with depression (DEP) in adults with cardiovascular disease (CVD), yet the underlying mechanism and successful management remain elusive. We approached this knowledge gap through the lens that humans are eukaryote-prokaryote "meta-organisms," such that cardiovascular disease dysregulation is a mosaic disorder involving dysbiosis of the gut. We hypothesized that patients diagnosed with hypertension plus depression harbor a unique gut microbial ecology with attending functional genomics engaged with their hosts' gut/brain axis physiology. METHODS: Stool microbiome DNA was analyzed by whole metagenome shotgun sequencing in 54 subjects parsed into cohorts diagnosed with HTN only (N = 18), DEP only (N = 7), DEP plus HTN (DEP-HTN) (N = 8), or reference subjects with neither HTN nor DEP (N = 21). A novel battery of machine-learning multivariate analyses of de-noised data yielded effect sizes and permutational covariance-based dissimilarities that significantly differentiated the cohorts (false discovery rate (FDR)-adjusted P ≤ .05); data clustering within 95% confidence interval). RESULTS: Metagenomic significant differences extricated the four cohorts. Data of the cohort exhibiting DEP-HTN were germane to the interplay of central control of blood pressure concomitant with the neuropathology of depressive disorders. DEP-HTN gut bacterial community ecology was defined by co-occurrence of Eubacterium siraeum, Alistipes obesi, Holdemania filiformis, and Lachnospiraceae bacterium 1.1.57FAA with Streptococcus salivariu. The corresponding microbial functional genomics of DEP-HTN engaged pathways degrading GABA and beneficial short chain fatty acids (SCFA), and are associated with enhanced sodium absorption and inflammasome induction. CONCLUSIONS: These data suggest a new putative endotype of hypertension, which we denote "depressive-hypertension" (DEP-HTN), for which we posit a model that is distinctive from either HTN alone or DEP alone. An "endotype" is a subtype of a heterogeneous pathophysiological mechanism. The DEP-HTN model incorporates a unique signature of microbial taxa and functional genomics with crosstalk that putatively intertwines host pathophysiology involving the gastrointestinal tract with disruptions in central control of blood pressure and mood. The DEP-HTN endotype model engages cardiology with gastroenterology and psychiatry, providing a proof-of-concept foundation to explore future treatments, diagnosis, and prevention of HTN-coupled mood disorders.


Asunto(s)
Afecto/fisiología , Biota/genética , Depresión , Disbiosis , Microbioma Gastrointestinal , Hipertensión , Adulto , Ciencias Bioconductuales , Depresión/diagnóstico , Depresión/metabolismo , Depresión/fisiopatología , Disbiosis/diagnóstico , Disbiosis/fisiopatología , Disbiosis/psicología , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Hipertensión/diagnóstico , Hipertensión/metabolismo , Hipertensión/psicología , Aprendizaje Automático , Masculino , Redes y Vías Metabólicas , Metagenoma
14.
Curr Opin Nephrol Hypertens ; 30(2): 159-165, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33394733

RESUMEN

PURPOSE OF REVIEW: Rapidly emerging evidence implicates an important role of gut-brain-bone marrow (BM) axis involving gut microbiota (GM), gut epithelial wall permeability, increased production of pro-inflammatory BM cells and neuroinflammation in hypertension (HTN). However, the precise sequence of events involving these organs remains to be established. Furthermore, whether an impaired gut-brain-BM axis is a cause or consequence of HTN is actively under investigation. This will be extremely important for translation of this fundamental knowledge to novel, innovative approaches for the control and management of HTN. Therefore, our objectives are to summarize the latest hypothesis, provide evidence for and against the impaired gut, BM and brain interactions in HTN and discuss perspectives and future directions. RECENT FINDINGS: Hypertensive stimuli activate autonomic neural pathways resulting in increased sympathetic and decreased parasympathetic cardiovascular modulation. This directly affects the functions of cardiovascular-relevant organs to increase blood pressure. Increases in sympathetic drive to the gut and BM also trigger sequences of signaling events that ultimately contribute to altered GM, increased gut permeability, enhanced gut- and brain-targeted pro-inflammatory cells from the BM in perpetuation and establishment of HTN. SUMMARY: In this review, we present the mechanisms involving the brain, gut, and BM, whose dysfunctional interactions may be critical in persistent neuroinflammation and key in the development and establishment of HTN.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Presión Sanguínea , Médula Ósea , Encéfalo , Humanos
15.
Clin Sci (Lond) ; 135(1): 1-17, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33399851

RESUMEN

The rapid spread of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought into focus the key role of angiotensin-converting enzyme 2 (ACE2), which serves as a cell surface receptor required for the virus to enter cells. SARS-CoV-2 can decrease cell surface ACE2 directly by internalization of ACE2 bound to the virus and indirectly by increased ADAM17 (a disintegrin and metalloproteinase 17)-mediated shedding of ACE2. ACE2 is widely expressed in the heart, lungs, vasculature, kidney and the gastrointestinal (GI) tract, where it counteracts the deleterious effects of angiotensin II (AngII) by catalyzing the conversion of AngII into the vasodilator peptide angiotensin-(1-7) (Ang-(1-7)). The down-regulation of ACE2 by SARS-CoV-2 can be detrimental to the cardiovascular system and kidneys. Further, decreased ACE2 can cause gut dysbiosis, inflammation and potentially worsen the systemic inflammatory response and coagulopathy associated with SARS-CoV-2. This review aims to elucidate the crucial role of ACE2 both as a regulator of the renin-angiotensin system and a receptor for SARS-CoV-2 as well as the implications for Coronavirus disease 19 and its associated cardiovascular and renal complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Cardiopatías/enzimología , Enfermedades Renales/enzimología , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/virología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/virología , Receptores Virales/genética , Receptores Virales/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2/fisiología
16.
Mol Psychiatry ; 26(8): 4277-4287, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31988436

RESUMEN

Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Aprendizaje Automático , Depresión/genética , Microbioma Gastrointestinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nucleótidos , Fenotipo , ARN Ribosómico 16S/genética
17.
Am Heart J Plus ; 5: 100023, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560412

RESUMEN

Introduction: Antihypertensive medication nonadherence is a prevalent issue but is very difficult to accurately assess. To clarify this problem among hypertensive patients attending a cardiovascular disease outpatient clinic, we utilized high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) to assess antihypertensive medication adherence and identify trends by sex and drug class. Methods: Serum was extracted from blood samples obtained from patients with either drug-controlled or drug resistant hypertension (RHTN) and analyzed via HPLC-MS for antihypertensive drugs which were categorized by drug class as beta blockers, aldosterone antagonists, diuretics, ACE inhibitor/ARBs, or calcium channel blockers. Clinic blood pressure (BP), sex, and prescription regimens were extracted from medical records at or near the time of blood collection. "Adherence" or "nonadherence" was determined by comparison of the patient's prescribed drug regimen and the presence/absence of prescribed drug(s) in their serum. Results: Among 76 patients (47 women; mean age 63; 53% white), nonadherence was confirmed in 29%. RHTN was more frequently identified in women than men (55% vs 38%) and nonadherence was higher in women than men (34% vs 21%). BP in those who were adherent to prescribed antihypertensive drugs was significantly lower than in those who were nonadherent (129/75 vs 145/83 mmHg, p = 0.0015). Overall, ACE inhibitors/ARBs were associated with the least nonadherence. Among women, nonadherence was highest for aldosterone antagonists, whereas among men, nonadherence was highest for diuretics. Conclusion: We observed nonadherence was more frequent among older women in a cohort of HTN and RHTN patients with cardiovascular disease based on HPLC-MS confirmed drug levels.

18.
Transl Vis Sci Technol ; 9(13): 20, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33344064

RESUMEN

Purpose: A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods: Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results: Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions: These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance: Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.


Asunto(s)
Diabetes Mellitus , Lactobacillus , Angiotensina I , Animales , Ratones , Fragmentos de Péptidos , Retina
19.
Antioxidants (Basel) ; 9(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260593

RESUMEN

Microbiota is involved in the host blood pressure (BP) regulation. The immunosuppressive drug mofetil mycophenolate (MMF) ameliorates hypertension. The present study analyzed whether MMF improves dysbiosis in mineralocorticoid-induced hypertension. Male Wistar rats were assigned to three groups: untreated (CTR), deoxycorticosterone acetate (DOCA)-salt, and DOCA treated with MMF for 4 weeks. MMF treatment reduced systolic BP, improved endothelial dysfunction, and reduced oxidative stress and inflammation in aorta. A clear separation in the gut bacterial community between CTR and DOCA groups was found, whereas the cluster belonging to DOCA-MMF group was found to be intermixed. No changes were found at the phylum level among all experimental groups. MMF restored the elevation in lactate-producing bacteria found in DOCA-salt joined to an increase in the acetate-producing bacteria. MMF restored the percentage of anaerobic bacteria in the DOCA-salt group to values similar to control rats. The improvement of gut dysbiosis was associated with an enhanced colonic integrity and a decreased sympathetic drive in the gut. MMF inhibited neuroinflammation in the paraventricular nuclei in the hypothalamus. This study demonstrates for the first time that MMF reduces gut dysbiosis in DOCA-salt hypertension models. This effect seems to be related to its capacity to improve gut integrity due to reduced sympathetic drive in the gut associated with reduced brain neuroinflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...