Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444942

RESUMEN

In this article, a high-performance nanostructured substrate has been fabricated for the ultrasensitive detection of the organic pollutant, Malachite green isothiocyanate (MGITC), in aquatic systems via the Surface Enhanced Raman Spectroscopy (SERS) technique. The chemical dealloying approach has been used to synthesize a three-dimensional nanoporous gold substrate (NPG) consisting of pores and multigrained ligament structures along thickness. The formation of the framework in NPG-5h has been confirmed by SEM with an average ligament size of 65 nm at the narrower neck. Remarkable SERS performance has been achieved by utilizing the NPG-5h substrate for the detection of MGITC, showing a signal enhancement of 7.9 × 109. The SERS substrate also demonstrated an impressively low-detection limit of 10-16 M. The presence of numerous active sites, as well as plasmonic hotspots on the nanoporous surface, can be accredited to the signal amplification via the Localized Surface Plasmon Resonance (LSPR) phenomenon. As a result, SERS detection technology with the fabricated-NPG substrate not only proves to be a simple and effective approach for detecting malachite green but also provides a basis for in situ detection approach of toxic chemicals in aquatic ecosystems.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770364

RESUMEN

Dense and mesoporous FePd nanowires (NWs) with 45 to 60 at.% Pd content were successfully fabricated by template- and micelle-assisted pulsed potentiostatic electrodeposition using nanoporous anodic alumina and polycarbonate templates of varying pore sizes. An FePd electrolyte was utilized for obtaining dense NWs while a block copolymer, P-123, was added to this electrolyte as the micelle-forming surfactant to produce mesoporous NWs. The structural and magnetic properties of the NWs were investigated by electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The as-prepared NWs were single phase with a face-centered cubic structure exhibiting 3.1 µm to 7.1 µm of length. Mesoporous NWs revealed a core-shell structure where the porosity was only witnessed in the internal volume of the NW while the outer surface remained non-porous. Magnetic measurements revealed that the samples displayed a soft ferromagnetic behavior that depended on the shape anisotropy and the interwire dipolar interactions. The mesoporous core and dense shell structure of the NWs were seen to be slightly affecting the magnetic properties. Moreover, mesoporous NWs performed excellently as SERS substrates for the detection of 4,4'-bipyridine, showing a low detection limit of 10-12 M. The signal enhancement can be attributed to the mesoporous morphology as well as the close proximity of the embedded NWs being conducive to localized surface plasmon resonance.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616045

RESUMEN

Fe and Pd thin film samples have been fabricated in a rapid fashion utilizing the versatile technique of dynamic hydrogen bubble template (DHBT) method via potentiostatic electrodeposition over a copper substrate. The morphology of the samples is dendritic, with the composition being directly proportional to the deposition time. All the samples have been tested as SERS substrates for the detection of Rhodamine 6G (R6G) dye. The samples perform very well, with the best performance shown by the Pd samples. The lowest detectable R6G concentration was found to be 10-6 M (479 µgL-1) by one of the Pd samples with the deposition time of 180 s. The highest enhancement of signals noticed in this sample can be attributed to its morphology, which is more nanostructured compared to other samples, which is extremely conducive to the phenomenon of localized surface plasmon resonance (LSPR). Overall, these samples are cheaper, easy to prepare with a rapid fabrication method, and show appreciable SERS performance.

4.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067564

RESUMEN

Characterized by a large surface area to volume ratio, nanostructured metal oxides possess unique chemical and physical properties with applications in electronics, catalysis, sensors, etc. In this study, Mo3Al8, an intermetallic compound, has been used as a precursor to obtain nanostructured molybdenum oxides. It was prepared into ribbons by arc-melting and melt-spinning techniques. Single and double-step free corrosion of the as-quenched material have been studied in 1 M KOH, 1 M HF and 1.25 M FeCl3 at room temperature. In both cases, nanostructured molybdenum oxides were obtained on a surface layer a few microns thick. Two of the as-prepared samples were tested for their electrocatalytic capability for hydrogen evolution reaction (HER) in 0.5 M H2SO4 giving low onset potential (-50 mV, -45 mV), small Tafel slopes (92 mV dec-1, 9 mV dec-1) and high exchange current densities (0.08 mA cm-2, 0.35 mA cm-2 respectively). The proposed nanostructured molybdenum oxides are cost-effective and sustainable due to the cheap and abundant starting material used and the simple synthetic route, paving the way for their possible application as HER electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...