Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(19): 55569-55581, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36897448

RESUMEN

This study aimed to investigate the impact of ozonation on inactivation of antibiotic-resistant bacteria (ARB) including E. coli, P. aeruginosa, and A. baumannii, as well as on removal of 16S-rRNA gene and their associated antibiotic-resistant genes (ARGs) indigenously present in effluent of municipal wastewater treatment plant. The Chick-Watson model was used to describe bacterial inactivation rates at specific ozone doses. Maximum reduction of total cultivable A. baumannii, E. coli, and P. aeruginosa were found to be 7.6, 7.1, and 4.7 log, respectively, with the highest ozone dose of 0.48 gO3/gCOD at 12 min contact time. According to the study results, complete inactivation of ARB and bacterial regrowth was not observed after 72 h incubation. The culture methods overestimated the performance of disinfection processes and propidium monoazide combined with qPCR, and showed the presence of viable but non-culturable bacteria after ozonation. ARGs were more persistent to ozone than ARB. The results of this study highlighted the significance of specific ozone dose and contact time in ozonation process considering the bacterial species and associated ARGs as well as the wastewater physicochemical characteristics, in order to help diminish the entrance of the biological microcontaminants into the environment.


Asunto(s)
Ozono , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Pseudomonas aeruginosa/genética , Escherichia coli/genética , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Antibacterianos/farmacología , Genes Bacterianos
2.
Water Environ Res ; 94(7): e10750, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35765862

RESUMEN

Municipal water resource recovery facilities (WRRFs) are important sources of antibiotic-resistant bacteria and genes (ARB and ARGs). In this study, antibiotic-resistant total heterotrophic bacteria (THBR ) counts (CFU/ml) cultivated from influent, effluent of activated sludge process, and outflow of disinfection unit of an urban WRRF were investigated for the presence of 16, 32, 64, and 128 µg/ml of nine antibiotics. The isolates of Pseudomonas spp., Acinetobacter spp., and Escherichia coli obtained from effluent of activated sludge process were subjected for molecular identification by detecting the 16S rRNA gene sequences. Additionally, using the polymerase chain reaction method (PCR), the isolates were investigated for the presence of blaSHV , blaTEM , blaCTX-M , blaVIM , sul1, and qnrS genes. According to the results, the abundance of THBR counts was not significantly reduced by the biological treatment except for cefixime and sulfamethoxazole; it also increased for some antibiotics after disinfection unit. The average removal efficiency of THBR resistant to ciprofloxacin, sulfamethoxazole, and ceftazidime were 7.9 ± 1.7%, 41.8 ± 2.1%, and 14.4 ± 6.2%, respectively. Also, all the tested isolates were resistant to at least four antibiotics. For all antibiotics, the resistance ratio (THBR /THB) significantly increased in the effluent and after chlorination unit. Among 12 resistant isolates, blaTEM and sul1 genes were the most frequently detected ones involved in 92% and 83% of the isolates, respectively. Both blaTEM and sul1 genes were found in 100% of E. coli, and 83% and 67% of Pseudomonas spp. isolates, respectively. Further efforts are necessary to limit the transmission of ARB and ARGs from WRRFs into the environment and prevent human health threats. PRACTITIONER POINTS: The ratio of resistance significantly increased after biological treatment. Up to 40% of heterotrophic bacteria in the effluent was antibiotic resistant. blaTEM and sul1 genes were more prevalent (92%) in all isolates of bacteria. Both blaTEM and sul1 genes were found in 100% of E. coli isolates. Pseudomonas spp. holds blaTEM and sul1 genes in 83% and 67% of isolates, respectively.


Asunto(s)
Antibacterianos , Escherichia coli , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Humanos , Pseudomonas , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Sulfametoxazol , Abastecimiento de Agua
3.
Chemosphere ; 288(Pt 1): 132489, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34626652

RESUMEN

We evaluated groundwater quality, pollution, and its effects on human health in the eastern part of the Lake Urmia basin, the largest lake in the Middle East. Although groundwater quality is suitable for drinking and irrigation purposes, an index-based approach quantifying heavy metal pollution revealed that most sampling sites exhibited moderate to high pollution levels in the northern and southern regions. The positive matrix factorization (PMF) and principal component analysis-multi linear regression (PCA-MLR) receptor models suggest that the main contributors to the observed groundwater pollution, expressed as percentages by model, were: lake water infiltration and dissolution of minerals and fertilizers (46% and 63%), infiltration of leachates from solid wastes (29% and 15%), mixing with industrial-municipal wastewaters (18% and 13%), and vehicular emissions (7% and 9%). The PMF model indicated better correlations between observed and predicted concentrations (R2 = 0.96) than the PCA-MLR (R2 = 0.89). Our results from the human health risk assessments (HHRA) highlight non-carcinogenic and carcinogenic risks for Pb and Cr, respectively. Also, the PMF-based assessment of human health risk indicated that wastewaters and solid waste leachates are responsible for the cancer risk from Cr for children.


Asunto(s)
Agua Subterránea , Lagos , Monitoreo del Ambiente , Humanos , Modelos Lineales , Análisis de Componente Principal , Medición de Riesgo
4.
Water Sci Technol ; 84(1): 172-181, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34280162

RESUMEN

Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of ß-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 µg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 108 and 4.3 × 106 CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the ß-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest ß-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health.


Asunto(s)
Antibacterianos , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Escherichia coli/genética , Genes Bacterianos , Hospitales , Humanos , Pseudomonas
5.
Sci Rep ; 11(1): 24519, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34972828

RESUMEN

The performance of ozonation for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) using Escherichia coli and Pseudomonas aeruginosa carrying ARGs from hospital wastewaters was evaluated in this study. Bacterial inactivation was determined using plate count methods and real time PCR for ARG damage (Sul1, blatem, blactx, blavim and qnrS). The reduction rate of bacterial cells and ARGs was increased by different amounts of transferred ozone dose from 11 to 45 mg/L. The concentration of 108 cfu/ml bacteria was reduced  to an acceptable level by ozone treatment after a 5 min contact time,  Although the removal rate was much higher for concentrations of 106 cfu/ml and 104 cfu/ml bacteria. Overall, the tendency of gene reduction by ozonation from more to less was 16S rRNA > sul1 > blatem > blactx > qnrS > blavim. Given that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process, our results can provide important insights into the fate of ARGs during hospital wastewater ozonation.


Asunto(s)
Desinfección/métodos , Farmacorresistencia Bacteriana , Escherichia coli , Genes Bacterianos , Ozono , Pseudomonas aeruginosa , Aguas Residuales/química , Aguas Residuales/microbiología , Purificación del Agua/métodos , Antibacterianos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hospitales , Irán , Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...