Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 14(1): 12271, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806637

RESUMEN

The impact of recombinant protein production (RPP) on host cells and the metabolic burden associated with it undermine the efficiency of the production system. This study utilized proteomics to investigate the dynamics of parent and recombinant cells induced at different time points for RPP. The results revealed significant changes in both transcriptional and translational machinery that may have impacted the metabolic burden, growth rate of the culture and the RPP. The timing of protein synthesis induction also played a critical role in the fate of the recombinant protein within the host cell, affecting protein and product yield. The study identified significant differences in the expression of proteins involved in fatty acid and lipid biosynthesis pathways between two E. coli host strains (M15 and DH5⍺), with the E. coli M15 strain demonstrating superior expression characteristics for the recombinant protein. Overall, these findings contribute to the knowledge base for rational strain engineering for optimized recombinant protein production.


Asunto(s)
Escherichia coli , Proteómica , Proteínas Recombinantes , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteómica/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Biosíntesis de Proteínas
2.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547055

RESUMEN

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Transducción de Señal , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Mucina-1
3.
Methods Mol Biol ; 2755: 191-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319579

RESUMEN

Hypoxia is a crucial microenvironmental factor that defines tumor cell growth and aggressiveness. Cancer cells adapt to hypoxia by altering their metabolism. These alterations impact various cellular and physiological functions, including energy metabolism, vascularization, invasion and metastasis, genetic instability, cell immortalization, stem cell maintenance, and resistance to chemotherapy (Li et al. Technol Cancer Res Treat 20:15330338211036304, 2021). Hypoxia-inducible factor-1α (HIF-1α) is known to be a critical regulator of glycolysis that directly regulates the transcription of multiple key enzymes of the glycolysis pathway. Moreover, HIF-1α stabilization can be directly modulated by TCA-derived metabolites, including 2-ketoglutarate and succinate (Infantino et al, Int J Mol Sci 22(22), https://doi.org/10.3390/ijms22115703 , 2021). Overall, the molecular mechanisms underlying the adaptation of cellular metabolism to hypoxia impact the metabolic phenotype of cancer cells. Such adaptations include increased glucose uptake, increased lactate production, and increased levels of other metabolites that stabilize HIF-1α, leading to a vicious circle of hypoxia-induced tumor growth.


Asunto(s)
Reprogramación Metabólica , Neoplasias Pancreáticas , Humanos , Páncreas , Metabolómica , Metabolismo Energético
4.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37875111

RESUMEN

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Asunto(s)
Antineoplásicos , Antagonistas del Ácido Fólico , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carbono , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Metotrexato/farmacología , Metotrexato/metabolismo , Metotrexato/uso terapéutico , Neoplasias/tratamiento farmacológico , Quimera Dirigida a la Proteólisis , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
Sci Rep ; 13(1): 21021, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030709

RESUMEN

Pancreatic Neuroendocrine tumors (PanNET) are challenging to diagnose and often detected at advanced stages due to a lack of specific and sensitive biomarkers. This study utilized proteomics as a valuable approach for cancer biomarker discovery; therefore, mass spectrometry-based proteomic profiling was conducted on plasma samples from 12 subjects (3 controls; 5 Grade I, 4 Grade II PanNET patients) to identify potential proteins capable of effectively distinguishing PanNET from healthy controls. Data are available via ProteomeXchange with the identifier PXD045045. 13.2% of proteins were uniquely identified in PanNET, while 60% were commonly expressed in PanNET and controls. 17 proteins exhibiting significant differential expression between PanNET and controls were identified with downstream analysis. Further, 5 proteins (C1QA, COMP, HSP90B1, ITGA2B, and FN1) were selected by pathway analysis and were validated using Western blot analysis. Significant downregulation of C1QA (p = 0.001: within groups, 0.03: control vs. grade I, 0.0013: grade I vs. grade II) and COMP (p = 0.011: within groups, 0.019: control vs grade I) were observed in PanNET Grade I & II than in controls. Subsequently, ELISA on 38 samples revealed significant downregulation of C1QA and COMP with increasing disease severity. This study shows the potential of C1QA and COMP in the early detection of PanNET, highlighting their role in the search for early-stage (Grade-I and Grade-II) diagnostic markers and therapeutic targets for PanNET.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Proteómica , Detección Precoz del Cáncer , Biomarcadores de Tumor/análisis
6.
J Fungi (Basel) ; 7(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34829254

RESUMEN

Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.

7.
Biotechnol Biofuels ; 14(1): 171, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446097

RESUMEN

BACKGROUND: Sugarcane bagasse (SCB) is an abundant feedstock for second-generation bioethanol production. This complex biomass requires an array of carbohydrate active enzymes (CAZymes), mostly from filamentous fungi, for its deconstruction to monomeric sugars for the production of value-added fuels and chemicals. In this study, we evaluated the repertoire of proteins in the secretome of a catabolite repressor-deficient strain of Penicillium funiculosum, PfMig188, in response to SCB induction and examined their role in the saccharification of SCB. RESULTS: A systematic approach was developed for the cultivation of the fungus with the aim of producing and understanding arrays of enzymes tailored for saccharification of SCB. To achieve this, the fungus was grown in media supplemented with different concentrations of pretreated SCB (0-45 g/L). The profile of secreted proteins was characterized by enzyme activity assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 280 proteins were identified in the secretome of PfMig188, 46% of them being clearly identified as CAZymes. Modulation of the cultivation media with SCB up to 15 g/L led to sequential enhancement in the secretion of hemicellulases and cell wall-modifying enzymes, including endo-ß-1,3(4)-glucanase (GH16), endo-α-1,3-glucanase (GH71), xylanase (GH30), ß-xylosidase (GH5), ß-1,3-galactosidase (GH43) and cutinase (CE5). There was ~ 122% and 60% increases in ß-xylosidase and cutinase activities, respectively. There was also a 36% increase in activities towards mixed-linked glucans. Induction of these enzymes in the secretome improved the saccharification performance to 98% (~ 20% increase over control), suggesting their synergy with core cellulases in accessing the recalcitrant region of SCB. CONCLUSION: Our findings provide an insight into the enzyme system of PfMig188 for degradation of complex biomass such as SCB and highlight the importance of adding SCB to the culture medium to optimize the secretion of enzymes specific for the saccharification of sugarcane bagasse.

8.
Sci Rep ; 11(1): 12045, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103559

RESUMEN

Acyl-ACP reductase (AAR) is one of the two key cyanobacterial enzymes along with aldehyde deformylating oxygenase (ADO) involved in the synthesis of long-chain alkanes, a drop-in biofuel. The enzyme is prone to aggregation when expressed in Escherichia coli, leading to varying alkane levels. The present work attempts to investigate the crucial structural aspects of AAR protein associated with its stability and folding. Characterization by dynamic light scattering experiment and intact mass spectrometry revealed that recombinantly expressed AAR in E. coli existed in multiple-sized protein particles due to diverse lipidation. Interestingly, while thermal- and urea-based denaturation of AAR showed 2-state unfolding transition in circular dichroism and intrinsic fluorescent spectroscopy, the unfolding process of AAR was a 3-state pathway in GdnHCl solution suggesting that the protein milieu plays a significant role in dictating its folding. Apparent standard free energy [Formula: see text] of ~ 4.5 kcal/mol for the steady-state unfolding of AAR indicated borderline stability of the protein. Based on these evidences, we propose that the marginal stability of AAR are plausible contributing reasons for aggregation propensity and hence the low catalytic activity of the enzyme when expressed in E. coli for biofuel production. Our results show a path for building superior biocatalyst for higher biofuel production.


Asunto(s)
Enoil-ACP Reductasa (NADPH Específica B)/metabolismo , Escherichia coli/enzimología , Hidrocarburos/química , Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Biocombustibles , Biofisica , Biotecnología , Cromatografía , Cromatografía Liquida , Dicroismo Circular , Luz , Espectrometría de Masas , Simulación de Dinámica Molecular , Oxigenasas/química , Desnaturalización Proteica , Pliegue de Proteína , Dispersión de Radiación , Espectrometría de Fluorescencia , Electricidad Estática , Synechococcus/metabolismo , Temperatura , Urea/química
9.
Environ Int ; 133(Pt A): 105089, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31654984

RESUMEN

BACKGROUND: Previous epidemiological studies, largely conducted in high-income countries and cross-sectional, have suggested a relatively strong association between exposure to dichlorodiphenyldichloroethylene (DDE), a metabolite of the pesticide dichlorodiphenyltrichloroethane (DDT), and type 2 diabetes. DDT is widely used in India and the prevalence of type 2 diabetes there is increasing, but the association between these factors has not been explored to date. OBJECTIVE: The objective was to estimate the association of the p,p' isomer of DDE with incident type 2 diabetes in India. METHODS: A nested case-control study was conducted in a representative prospective cohort of adults from two cities in India. Participants were enrolled in 2010-11 (n = 12,271) and followed for annual assessment of chronic diseases including type 2 diabetes. Baseline plasma samples from incident cases of diabetes (n = 193) and sex-city-matched controls (n = 323) were selected for analysis of p,p-DDE. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. RESULTS: At baseline, cases had higher p,p-DDE concentrations: geometric mean (95% CI) 330 (273-399) ng/g lipid compared to 223 (189-262) ng/g lipid among controls. Delhi participants had higher p,p-DDE concentrations: 579 (521-643) ng/g lipid compared to 122 (102-145) ng/g lipid in Chennai. In unadjusted models, being in the highest versus lowest quartile of p,p-DDE was associated with a more than doubling of the odds of diabetes: unadjusted OR (95% CI), 2.30 (1.19, 4.43). However, this effect was no longer significant after adjustment for age: adjusted (95% CI), 0.97 (0.46, 2.06). DISCUSSION: Results suggest that levels of p,p'-DDE in Delhi are exceptionally high, but we did not observe a significant association between p,p-DDE and incident type 2 diabetes. As this is the first study to evaluate this association in India, more studies are needed to inform our understanding of the association in this context, including potential routes of exposure.


Asunto(s)
DDT/toxicidad , Diabetes Mellitus Tipo 2/inducido químicamente , Diclorodifenil Dicloroetileno/sangre , Plaguicidas/toxicidad , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , DDT/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diclorodifenil Dicloroetileno/efectos adversos , Femenino , Humanos , Incidencia , India/epidemiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Plaguicidas/sangre , Estudios Prospectivos
10.
Biotechnol Biofuels ; 12: 176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316583

RESUMEN

BACKGROUND: Many studies have been carried out on the growth-modulating efficiency of plants by the colonization of an endophytic fungus Piriformospora indica. However, studies involving the co-culture of alga with endophytic fungal strains for enhanced biodiesel production are rare. In this study, the interaction between P. indica and Parachlorella kessleri-I, a marine algal strain, was assessed at metabolic level. RESULTS: In association with an endophytic fungus, the algal biomass enhanced from 471.6 to 704 mg/L, and the fatty acid methyl ester (FAME) profile of P. kessleri-I increased substantially. In case of FAME profile of co-cultured P. kessleri-I, two essential components of biodiesel, i.e. elaidic acid and oleic acid, increased by 1.4- and 1.8-fold, respectively. To ascertain changes in the metabolic profile of P. kessleri-I by P. indica co-culture, gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics study was performed to identify the metabolites involved; and differential nature of the essential metabolites was also confirmed using HPLC and LC-MS. Significant modulation of the bioactive metabolites such as succinate, oxo-propanoate, l-alanine, glutamate, acetate and 1,2 propanediol, hydroxy butane was observed. CONCLUSION: The metabolites like glutamate and succinate that usually belong to the GABA shunt pathway were observed to be upregulated. The pathway links nitrogen metabolism and carbon metabolism, thus influencing the growth and lipid profile of the algae. These differential metabolites thus indicated the important commensal association between the endophytic fungus and autotrophic marine alga, and established that endophytic fungus can be handy for the sustainability of algal biofuel industries.

11.
J Biol Chem ; 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827309

RESUMEN

This article has been withdrawn by the authors. Figs 4B and 6C were inappropriately presented.

12.
Sci Rep ; 7(1): 3700, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623337

RESUMEN

Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.


Asunto(s)
Biomasa , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Plantas/metabolismo , Catálisis , Glicósidos/metabolismo , Hidrólisis , Modelos Moleculares , Conformación Molecular , Plantas/química , Unión Proteica , Solubilidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...