Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Pharmacol Toxicol ; 25(1): 44, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090674

RESUMEN

BACKGROUND: Colorectal cancer (CRC), now the second most prevalent malignant tumor worldwide, is more prevalent in young adults. In recent decades, there has been progress in creating anti-colorectal cancer medications, including cytotoxic compounds. OBJECTIVES: Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of novel formulations in preventing colorectal cancer. METHODS: During this study, we assessed a new kind of niosome called cyclo-Gly-L-DOPA (CG-Nio-CGLD) made from chitosan glutamate. We evaluated the anti-colorectal cancer properties of CG-Nio-CGLD utilizing CCK-8, invasion assay, MTT assay, flow cytometry, and cell cycle analysis. The transcription of genes associated with apoptosis was analyzed using quantitative real-time PCR. At the same time, the cytotoxicity of nanomaterials on both cancer and normal cell lines was assessed using MTT assays. Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of newly developed formulations in preventing colorectal cancer. RESULTS: The Nio-CGLD and CG-Nio-CGLD were spherical mean diameters of 169.12 ± 1.87 and 179.26 ± 2.17 nm, respectively. Entrapment efficiency (EE%) measurements of the Nio-CGLD and CG-Nio-CGLD were 63.12 ± 0.51 and 76.43 ± 0.34%, respectively. In the CG-Nio-CGLD group, the percentages of early, late, necrotic, and viable CL40 cells were 341.93%, 23.27%, 9.32%, and 25.48%. The transcription of the genes PP53, cas3, and cas8 was noticeably higher in the treatment group compared to the control group (P > 0.001). Additionally, the treatment group had lower BCL2 and survivin gene expression levels than the control group (P < 0.01). Additionally, CG-Nio-CGLD formulations demonstrated a biocompatible nanoscale delivery mechanism and displayed little cytotoxicity toward the CCD 841 CoN reference cell line. CONCLUSION: These findings indicate that chitosan-based noisome encapsulation may enhance the effectiveness of CG-Nio-CGLD formulations in fighting cancer.


Asunto(s)
Antineoplásicos , Quitosano , Neoplasias Colorrectales , Liposomas , Humanos , Quitosano/química , Quitosano/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Ácido Glutámico , Péptidos Cíclicos/química , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/farmacología , Apoptosis/efectos de los fármacos , Survivin , Supervivencia Celular/efectos de los fármacos
2.
Food Chem (Oxf) ; 7: 100177, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38155685

RESUMEN

Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome b genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.

3.
Chem Biodivers ; 20(7): e202201008, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37157889

RESUMEN

Nanoparticles (NPs) may help treat multidrug-resistant Staphylococcus aureus (MDR). This study prepared and evaluated chitosan/alginate-encapsulated Echinacea angustifolia extract against MDR strains. Evaluating synthesized NPs with SEM, DLS, and FT-IR. Congo red agar and colorimetric plate techniques examined isolate biofilm formation. NP antibacterial power was assessed using well diffusion. Real-time PCR assessed biofilm-forming genes. MTT assessed the synthesized NPs' toxicity. According to DLS measurements, spherical E. angustifolia NPs had a diameter of 335.3±1.43 nm. The PDI was 0.681, and the entrapment effectiveness (EE%) of the E. angustifolia extract reached 83.45 %. Synthesized NPs were most antimicrobial. S. aureus resistant to several treatments was 80 percent of 100 clinical samples. Biofilm production was linked to MDR in all strains. The ALG/CS-encapsulated extract had a 4 to 32-fold lower MIC than the free extract, which had no bactericidal action. They also significantly decreased the expression of genes involved in biofilm formation. E. angustifolia-encapsulated ALG/CS decreased IcaD, IcaA, and IcaC gene expression in all MDR strains (***p<0.001). Free extract, free NPs, and E. angustifolia-NPs had 57.5 %, 85.5 %, and 90.0 % cell viability at 256 µg/ml. These discoveries could assist generate stable plant extracts by releasing natural-derived substances under controlled conditions.


Asunto(s)
Quitosano , Echinacea , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Infecciones Estafilocócicas , Quitosano/farmacología , Alginatos , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
4.
Sci Rep ; 12(1): 5140, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332241

RESUMEN

We aim to assess the antibacterial and anti-biofilm properties of Niosome-encapsulated Imipenem. After isolating Staphylococcus epidermidis isolates and determining their microbial sensitivity, their ability to form biofilms was examined using plate microtiter assay. Various formulations of Niosome-encapsulated Imipenem were prepared using the thin-film hydration method, Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Inhibitory Concentration (MIC) were determined, and biofilm genes expression was examined. Drug formulations' toxicity effect on HDF cells were determined using MTT assay. Out of the 162 separated S. epidermidis, 106 were resistant to methicillin. 87 MRSE isolates were vancomycin-resistant, all of which could form biofilms. The F1 formulation of niosomal Imipenem with a size of 192.3 ± 5.84 and an encapsulation index of 79.36 ± 1.14 was detected, which prevented biofilm growth with a BGI index of 69% and reduced icaD, FnbA, EbpS biofilms' expression with P ≤ 0.001 in addition to reducing MBIC and MIC by 4-6 times. Interestingly, F1 formulation of niosomal Imipenem indicated cell viability over 90% at all tested concentrations. The results of the present study indicate that Niosome-encapsulated Imipenem reduces the resistance of MRSE to antibiotics in addition to increasing its anti-biofilm and antibiotic activity, and could prove useful as a new strategy for drug delivery.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Imipenem/farmacología , Liposomas/farmacología , Resistencia a la Meticilina , Pruebas de Sensibilidad Microbiana , Prevalencia , Staphylococcus epidermidis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA