Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38626754

RESUMEN

OBJECTIVE: Different methods can be used to condition imaging systems for clinical use. The purpose of this study was to assess how these methods complement one another in evaluating a system for clinical integration of an emerging technology, photon-counting computed tomography (PCCT), for thoracic imaging. METHODS: Four methods were used to assess a clinical PCCT system (NAEOTOM Alpha; Siemens Healthineers, Forchheim, Germany) across 3 reconstruction kernels (Br40f, Br48f, and Br56f). First, a phantom evaluation was performed using a computed tomography quality control phantom to characterize noise magnitude, spatial resolution, and detectability. Second, clinical images acquired using conventional and PCCT systems were used for a multi-institutional reader study where readers from 2 institutions were asked to rank their preference of images. Third, the clinical images were assessed in terms of in vivo image quality characterization of global noise index and detectability. Fourth, a virtual imaging trial was conducted using a validated simulation platform (DukeSim) that models PCCT and a virtual patient model (XCAT) with embedded lung lesions imaged under differing conditions of respiratory phase and positional displacement. Using known ground truth of the patient model, images were evaluated for quantitative biomarkers of lung intensity histograms and lesion morphology metrics. RESULTS: For the physical phantom study, the Br56f kernel was shown to have the highest resolution despite having the highest noise and lowest detectability. Readers across both institutions preferred the Br56f kernel (71% first rank) with a high interclass correlation (0.990). In vivo assessments found superior detectability for PCCT compared with conventional computed tomography but higher noise and reduced detectability with increased kernel sharpness. For the virtual imaging trial, Br40f was shown to have the best performance for histogram measures, whereas Br56f was shown to have the most precise and accurate morphology metrics. CONCLUSION: The 4 evaluation methods each have their strengths and limitations and bring complementary insight to the evaluation of PCCT. Although no method offers a complete answer, concordant findings between methods offer affirmatory confidence in a decision, whereas discordant ones offer insight for added perspective. Aggregating our findings, we concluded the Br56f kernel best for high-resolution tasks and Br40f for contrast-dependent tasks.

2.
Clin Imaging ; 102: 109-115, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672849

RESUMEN

PURPOSE: Advantages of virtual monoenergetic images (VMI) have been reported for dual energy CT of the head and neck, and more recently VMIs derived from photon-counting (PCCT) angiography of the head and neck. We report image quality metrics of VMI in a PCCT angiography dataset, expanding the anatomical regions evaluated and extending observer-based qualitative methods further than previously reported. METHODS: In a prospective study, asymptomatic subjects underwent contrast enhanced PCCT of the head and neck using an investigational scanner. Image sets of low, high, and full spectrum (Threshold-1) energies; linear mix of low and high energies (Mix); and 23 VMIs (40-150 keV, 5 keV increments) were generated. In 8 anatomical locations, SNR and radiologists' preferences for VMI energy levels were measured using a forced-choice rank method (4 observers) and ratings of image quality using visual grading characteristic (VGC) analysis (2 observers) comparing VMI to Mix and Threshold-1 images. RESULTS: Fifteen subjects were included (7 men, 8 women, mean 57 years, range 46-75). Among all VMIs, SNRs varied by anatomic location. The highest SNRs were observed in VMIs. Radiologists preferred 50-60 keV VMIs for vascular structures and 75-85 keV for all other structures. Cumulative ratings of image quality averaged across all locations were higher for VMIs with areas under the curve of VMI vs Mix and VMI vs Threshold-1 of 0.67 and 0.68 for the first reader and 0.72 and 0.76 for the second, respectively. CONCLUSION: Preferred keV level and quality ratings of VMI compared to mixed and Threshold-1 images varied by anatomical location.


Asunto(s)
Cabeza , Cuello , Masculino , Femenino , Humanos , Estudios Prospectivos , Cabeza/diagnóstico por imagen , Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Angiografía
3.
Phys Med ; 114: 102683, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738807

RESUMEN

PURPOSE: Photon-counting CT (PCCT) has higher spatial resolution that conventional EID CT which improves imaging of stationary coronary plaques and stents.. In this work, we evaluated the relationship between higher spatial resolution and motion acquisition on an investigational PCCT system. METHODS: An investigational photon-counting CT scanner (Siemens CounT) with ECG gating was used to image a coronary tree phantom with models of healthy, stenotic, and stented arteries using a motion simulator. Images were acquired with matched clinical parameters at rest and 60 beats per minute. An additional set of high dose stationary images were averaged to generate a motion-free, reduced noise reference. Scans were completed at standard (0.5 mm2) and high-resolution (0.25 mm2). Motion images were reconstructed at multiple phases. Regions of interest were drawn around vessels and segmented. Percentage difference from the reference standard was evaluated for vessel diameter and circularity. Mutual information between the reference and stationary and motion datasets was used as a measure of volumetric similarity. RESULTS: The stenotic vessel showed the most variation from the reference when compared to healthy or stented vessels. Compared to standard resolution, high-resolution images had lower bias for diameter (-0.012 ± 0.19% vs -0.052 ± 0.14%) and lower variability for circularity (-0.13 ± 0.138% vs -0.12 ± 0.144%). Both differences were found to be statistically significant. High-resolution images had a slightly lower mutual information (1.28) than standard resolution (1.31). CONCLUSION: The higher spatial resolution enabled by photon-counting CT can be harnessed for cardiac imaging as the benefits of high spatial resolution acquisitions remain relevant in the presence of motion.


Asunto(s)
Corazón , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Corazón/diagnóstico por imagen , Movimiento (Física) , Fotones , Electrocardiografía
4.
J Comput Assist Tomogr ; 47(4): 613-620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37380149

RESUMEN

ABSTRACT: Photon-counting computed tomography (PCCT) offers better high-resolution and noise performance than energy integrating detector (EID) CT. In this work, we compared both technologies for imaging of the temporal bone and skull base. A clinical PCCT system and 3 clinical EID CT scanners were used to image the American College of Radiology image quality phantom using a clinical imaging protocol with matched CTDI vol (CT dose index-volume) of 25 mGy. Images were used to characterize the image quality of each system across a series of high-resolution reconstruction options. Noise was calculated from the noise power spectrum, whereas resolution was quantified with a bone insert by calculating a task transfer function. Images of an anthropomorphic skull phantom and 2 patient cases were examined for visualization of small anatomical structures. Across measured conditions, PCCT had a comparable or smaller average noise magnitude (120 Hounsfield units [HU]) to the EID systems (144-326 HU). Photon-counting CT also had comparable resolution (task transfer function f25 : 1.60 mm -1 ) to the EID systems (1.34-1.77 mm -1 ). Imaging results supported quantitative findings as PCCT more clearly showed the 12-lp/cm bars from the fourth section of the American College of Radiology phantom and better represented the vestibular aqueduct and oval and round windows when compared with the EID scanners. A clinical PCCT system was able to image the temporal bone and skull base with improved spatial resolution and lower noise than clinical EID CT systems at matched dose.


Asunto(s)
Cabeza , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Fantasmas de Imagen , Base del Cráneo/diagnóstico por imagen , Fotones
5.
PET Clin ; 18(1): 135-148, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442961

RESUMEN

Time provides a common frame of reference for understanding different processes of change. Within the context of medical imaging, time has three different time scales to be considered: (i) microtime, (ii) mesotime, and (iii) macrotime, respectively, which span a single imaging session, distinct imaging sessions within a short period, and scans with large time gaps spanning months of even years. There has commonly been greater emphasis on the microtime and mesotime scales in both clinical practice and research, with less focus on questions that are at the macrotime scale.


Asunto(s)
Medicina Nuclear , Humanos , Cintigrafía
6.
Radiol Cardiothorac Imaging ; 3(5): e210102, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34778782

RESUMEN

PURPOSE: To compare the performance of energy-integrating detector (EID) CT, photon-counting detector CT (PCCT), and high-resolution PCCT (HR-PCCT) for the visualization of coronary plaques and reduction of stent artifacts in a phantom model. MATERIALS AND METHODS: An investigational scanner with EID and PCCT subsystems was used to image a coronary artery phantom containing cylindrical probes simulating different plaque compositions. The phantom was imaged with and without coronary stents using both subsystems. Images were reconstructed with a clinical cardiac kernel and an additional HR-PCCT kernel. Regions of interest were drawn around probes and evaluated for in-plane diameter and a qualitative comparison by expert readers. A linear mixed-effects model was used to compare the diameter results, and a Shrout-Fleiss intraclass correlation coefficient was used to assess consistency in the reader study. RESULTS: Comparing in-plane diameter to the physical dimension for nonstented and stented phantoms, measurements of the HR-PCCT images were more accurate (nonstented: 4.4% ± 1.1 [standard deviation], stented: -9.4% ± 4.6) than EID (nonstented: 15.5% ± 4.0, stented: -19.5% ± 5.8) and PCCT (nonstented: 19.4% ± 2.5, stented: -18.3% ± 4.4). Our analysis of variance found diameter measurements to be different across image groups for both nonstented and stented cases (P < .001). HR-PCCT showed less change on average in percent stenosis due to the addition of a stent (-5.5%) than either EID (+90.5%) or PCCT (+313%). For both nonstented and stented phantoms, observers rated the HR-PCCT images as having higher plaque conspicuity and as being the image type that was least impacted by stent artifacts, with a high level of agreement (interclass correlation coefficient = 0.85). CONCLUSION: Despite increased noise, HR-PCCT images were able to better visualize coronary plaques and reduce stent artifacts compared with EID or PCCT reconstructions.Keywords: CT-Spectral Imaging (Dual Energy), Phantom Studies, Cardiac, Physics, Technology Assessment© RSNA, 2021.

7.
IEEE Trans Radiat Plasma Med Sci ; 5(4): 588-595, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34250326

RESUMEN

Photon-counting CT detectors are the next step in advancing CT system development and will replace the current energy integrating detectors (EID) in CT systems in the near future. In this context, the performance of PCCT was compared to EID CT for three clinically relevant tasks: abdominal soft tissue imaging, where differentiating low contrast features is important; vascular imaging, where iodine detectability is critical; and, high-resolution skeletal and lung imaging. A multi-tiered phantom was imaged on an investigational clinical PCCT system (Siemens Healthineers) across different doses using three imaging modes: macro and ultra-high resolution (UHR) PCCT modes and EID CT. Images were reconstructed using filtered backprojection and soft tissue (B30f), vascular (B46f), or high-resolution (B70f; U70f for UHR) kernels. Noise power spectra, task transfer functions, and detectability index were evaluated. For a soft tissue task, PCCT modes showed comparable noise and resolution with improved contrast-to-noise ratio. For a vascular task, PCCT modes showed lower noise and improved iodine detectability. For a high resolution task, macro mode showed lower noise and comparable resolution while UHR mode showed higher noise but improved spatial resolution for both air and bone. PCCT offers competitive advantages to EID CT for clinical tasks.

8.
J Thorac Imaging ; 36(2): 84-94, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399350

RESUMEN

Photon-counting computed tomography (CT) is a developing technology that has the potential to address some limitations of CT imaging and bring about improvements and potentially new applications to this field. Photon-counting detectors have a fundamentally different detection mechanism from conventional CT energy-integrating detectors that can improve dose efficiency, spatial resolution, and energy-discrimination capabilities. In the past decade, promising human studies have been reported in the literature that have demonstrated benefits of this relatively new technology for various clinical applications. In this review, we provide a succinct description of the photon-counting detector technology and its detection mechanism in comparison with energy-integrating detectors in a manner understandable for clinicians and radiologists, introduce benefits and some of the existing challenges present in this technology, and provide an overview of the current status and potential clinical applications of this technology in imaging of the thorax by providing example images acquired with an investigational whole-body photon-counting CT scanner.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Humanos , Tórax/diagnóstico por imagen , Tomografía
9.
Acad Radiol ; 28(12): 1754-1760, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32855051

RESUMEN

RATIONALE AND OBJECTIVES: The purpose of this study was to investigate the potential of photon-counting CT (PCCT) to improve quantitative image quality for low dose imaging compared to energy-integrating detector CT (EID CT). MATERIALS AND METHODS: An investigational scanner (Siemens, Germany) with PCCT and EID CT subsystems was used to compare image quality performance at four dose levels: 1.7, 2, 4, 6 mGy CTDIvol, all at or below current dose values used for conventional abdominal CT. A CT quality control phantom with a homogeneous section for noise measurements and a section with cylindrical inserts of air (-910 HU), polystyrene (50 HU), acrylic (205 HU), and Teflon (1000 HU) was imaged and characterized in terms of noise, resolution, contrast-to-noise ratio (CNR), and detectability index. A second phantom with a 30 cm diameter was also imaged containing iodine solutions ranging from 0.125 to 8 mg I/mL. CNR of the iodine vials was computed as a function of CT dose and iodine concentration. RESULTS: With resolution unaffected by dose in both PCCT and EID CT, PCCT images exhibited 22.1-24.0% improvement in noise across dose levels evaluated. This noise improvement translated into a 29-41% improvement in CNR and 20-36% improvement in detectability index. For iodine contrast, PCCT images had a higher CNR for all combinations of iodine contrast and dose evaluated. CONCLUSION: For the conditions studied, PCCT exhibited superior image quality compared to EID CT. For iodine detection, PCCT offered a notable advantage with improved CNR at all doses and iodine concentration levels.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Alemania , Humanos , Fantasmas de Imagen , Fotones
10.
Artículo en Inglés | MEDLINE | ID: mdl-33304618

RESUMEN

The aim of this study was to develop and validate a simulation platform that generates photon-counting CT images of voxelized phantoms with detailed modeling of manufacturer-specific components including the geometry and physics of the x-ray source, source filtrations, anti-scatter grids, and photon-counting detectors. The simulator generates projection images accounting for both primary and scattered photons using a computational phantom, scanner configuration, and imaging settings. Beam hardening artifacts are corrected using a spectrum and threshold dependent water correction algorithm. Physical and computational versions of a clinical phantom (ACR) were used for validation purposes. The physical phantom was imaged using a research prototype photon-counting CT (Siemens Healthcare) with standard (macro) mode, at four dose levels and with two energy thresholds. The computational phantom was imaged with the developed simulator with the same parameters and settings used in the actual acquisition. Images from both the real and simulated acquisitions were reconstructed using a reconstruction software (FreeCT). Primary image quality metrics such as noise magnitude, noise ratio, noise correlation coefficients, noise power spectrum, CT number, in-plane modulation transfer function, and slice sensitivity profiles were extracted from both real and simulated data and compared. The simulator was further evaluated for imaging contrast materials (bismuth, iodine, and gadolinium) at three concentration levels and six energy thresholds. Qualitatively, the simulated images showed similar appearance to the real ones. Quantitatively, the average relative error in image quality measurements were all less than 4% across all the measurements. The developed simulator will enable systematic optimization and evaluation of the emerging photon-counting computed tomography technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...