Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 51(6): 1566-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20028662

RESUMEN

Progress in understanding the biology of protein fatty acylation has been impeded by the lack of rapid direct detection and identification methods. We first report that a synthetic omega-alkynyl-palmitate analog can be readily and specifically incorporated into GAPDH or mitochondrial 3-hydroxyl-3-methylglutaryl-CoA synthase in vitro and reacted with an azido-biotin probe or the fluorogenic probe 3-azido-7-hydroxycoumarin using click chemistry for rapid detection by Western blotting or flat bed fluorescence scanning. The acylated cysteine residues were confirmed by MS. Second, omega-alkynyl-palmitate is preferentially incorporated into transiently expressed H- or N-Ras proteins (but not nonpalmitoylated K-Ras), compared with omega-alkynyl-myristate or omega-alkynyl-stearate, via an alkali sensitive thioester bond. Third, omega-alkynyl-myristate is specifically incorporated into endogenous co- and posttranslationally myristoylated proteins. The competitive inhibitors 2-bromopalmitate and 2-hydroxymyristate prevented incorporation of omega-alkynyl-palmitate and omega-alkynyl-myristate into palmitoylated and myristoylated proteins, respectively. Labeling cells with omega-alkynyl-palmitate does not affect membrane association of N-Ras. Furthermore, the palmitoylation of endogenous proteins including H- and N-Ras could be easily detected using omega-alkynyl-palmitate as label in cultured HeLa, Jurkat, and COS-7 cells, and, promisingly, in mice. The omega-alkynyl-myristate and -palmitate analogs used with click chemistry and azido-probes will be invaluable to study protein acylation in vitro, in cells, and in vivo.


Asunto(s)
Alquinos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Enzimas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Células Jurkat , Lipoilación , Ratones , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Factores de Tiempo , Proteínas ras/química , Proteínas ras/metabolismo
2.
FASEB J ; 22(3): 721-32, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17971398

RESUMEN

Increased levels of circulating saturated free fatty acids, such as palmitate, have been implicated in the etiology of type II diabetes and cancer. In addition to being a constituent of glycerolipids and a source of energy, palmitate also covalently attaches to numerous cellular proteins via a process named palmitoylation. Recognized for its roles in membrane tethering, cellular signaling, and protein trafficking, palmitoylation is also emerging as a potential regulator of metabolism. Indeed, we showed previously that the acylation of two mitochondrial proteins at their active site cysteine residues result in their inhibition. Herein, we sought to identify other palmitoylated proteins in mitochondria using a nonradioactive bio-orthogonal azido-palmitate analog that can be selectively derivatized with various tagged triarylphosphines. Our results show that, like palmitate, incorporation of azido-palmitate occurred on mitochondrial proteins via thioester bonds at sites that could be competed out by palmitoyl-CoA. Using this method, we identified 21 putative palmitoylated proteins in the rat liver mitochondrial matrix, a compartment not recognized for its content in palmitoylated proteins, and confirmed the palmitoylation of newly identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. We postulate that covalent modification and perhaps inhibition of various mitochondrial enzymes by palmitoyl-CoA could lead to the metabolic impairments found in obesity-related diseases.


Asunto(s)
Acilcoenzima A/química , Azidas/química , Ácidos Grasos/química , Lipoilación , Proteínas Mitocondriales/metabolismo , Ácido Palmítico/metabolismo , Acilcoenzima A/biosíntesis , Animales , Azidas/metabolismo , Células Cultivadas , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Humanos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Mitocondrias Hepáticas/enzimología , Proteínas Mitocondriales/química , Estructura Molecular , Ácido Palmítico/química , Ratas
3.
FASEB J ; 22(3): 797-806, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17932026

RESUMEN

Myristoylation is the attachment of the 14-carbon fatty acid myristate to the N-terminal glycine residue of proteins. Typically a co-translational modification, myristoylation of proapoptotic cysteinyl-aspartyl proteases (caspase)-cleaved Bid and PAK2 was also shown to occur post-translationally and is essential for their proper localization and proapoptotic function. Progress in the identification and characterization of myristoylated proteins has been impeded by the long exposure times required to monitor incorporation of radioactive myristate into proteins (typically 1-3 months). Consequently, we developed a nonradioactive detection methodology in which a bio-orthogonal azidomyristate analog is specifically incorporated co- or post-translationally into proteins at N-terminal glycines, chemoselectively ligated to tagged triarylphosphines and detected by Western blotting with short exposure times (seconds to minutes). This represents over a million-fold signal amplification in comparison to using radioactive labeling methods. Using rational prediction analysis to recognize putative internal myristoylation sites in caspase-cleaved proteins combined with our nonradioactive chemical detection method, we identify 5 new post-translationally myristoylatable proteins (PKC epsilon, CD-IC2, Bap31, MST3, and the catalytic subunit of glutamate cysteine ligase). We also demonstrate that 15 proteins undergo post-translational myristoylation in apoptotic Jurkat T cells. This suggests that post-translational myristoylation of caspase-cleaved proteins represents a novel mechanism widely used to regulate cell death.


Asunto(s)
Apoptosis , Azidas/química , Ácidos Mirísticos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Animales , Western Blotting , Células COS , Línea Celular , Técnicas de Química Analítica/métodos , Chlorocebus aethiops , Glicina/química , Glicina/metabolismo , Humanos , Células Jurkat , Ácidos Mirísticos/química , Proteínas/análisis , Proteínas/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA