Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Res ; 247: 118161, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220078

RESUMEN

Pathogenic bacteria, viruses, and parasites can cause waterborne disease outbreaks. The study of coastal water quality contributes to identifying potential risks to human health and to improving water management practices. The Río de la Plata River, a wide estuary in South America, is used for recreational activities, as a water source for consumption and as a site for sewage discharges. In the present study, as the first step of a quantitative microbial risk assessment of the coastal water quality of this river, a descriptive study was performed to identify the microbial pathogens prevalent in its waters and in the sewage discharged into the river. Two sites, representing two different potential risk scenarios, were chosen: a heavily polluted beach and an apparently safe beach. Conductivity and fecal contamination indicators including enterococci, Escherichia coli, F + RNA bacteriophages, and human polyomaviruses showed high levels. Regarding enterococci, differences between sites were significant (p-values <0.001). 93.3% and 56.5% of the apparently safe beach exceeded the recreational water limits for E. coli and enterococci. Regarding pathogens, diarrheagenic E. coli, Salmonella, and noroviruses were detected with different frequencies between sites. The parasites Cryptosporidium spp. and Giardia duodenalis were frequently detected in both sites. The results regarding viral, bacterial, and parasitic pathogens, even without correlation with conventional indicators, showed the importance of monitoring a variety of microorganisms to determine water quality more reliably and accurately, and to facilitate further studies of health risk assessment. The taxonomic description of microbial pathogens in river waters allow identifying the microorganisms that infect the population living on its shores but also pathogens not previously reported by the clinical surveillance system.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Parásitos , Animales , Humanos , Ríos , Escherichia coli , Aguas del Alcantarillado , Monitoreo del Ambiente/métodos , Bacterias , Enterococcus , Microbiología del Agua , Heces/microbiología
2.
An Acad Bras Cienc ; 95(1): e20211199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790270

RESUMEN

Bacterial strains were isolated from soil and aqueous solution samples from the Salar del Hombre Muerto, Argentina. A total of 141 strains were characterized and the tolerance to sodium chloride was evaluated. We performed a screening to search for molecules of biotechnological interest: carotenoids (11%), emulsifiers (95%), and exopolysaccharides (6%), and to assess the production of enzymes, including proteolytic (39%), lipolytic (26%), hemolytic (50%), and catalase activities (99%); 25 bacterial strains were selected for further studies. Some of them produced biofilms, but only Bacillus sp. HA120b showed that ability in all the conditions assayed. Although 21 strains were able to form emulsions, the emulsifying index Kocuria sp. M9 and Bacillus sp. V3a cultures were greater than 50% and, emulsions were more stable when the bacteria grew in higher salt concentrations. Only pigmented Kocuria sp. M9 showed lipolytic activity on olive oil medium and was able to produce biofilms when cultured without and with 4 M of NaCl. Yellow pigments, lipase activity, and biosurfactant production were observed for Micrococcus sp. SX120. Summarizing, we found that the selected bacteria produced highly interesting molecules with diverse industrial applications and, many of them are functional in the presence of high salt concentrations.


Asunto(s)
Bacillus , Argentina , Emulsiones , Bacterias , Biotecnología
3.
Sci Total Environ ; 862: 160573, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460114

RESUMEN

Wastewater-based epidemiology is an economical and effective tool for monitoring the COVID-19 pandemic. In this study we proposed sampling campaigns that addressed spatial-temporal trends within a metropolitan area. This is a local study of detection and quantification of SARS-CoV-2 in wastewater during the onset, rise, and decline of COVID-19 cases in Salta city (Argentina) over the course of a twenty-one-week period (13 Aug to 30 Dec) in 2020. Wastewater samples were gathered from 13 sewer manholes specific to each sewershed catchment, prior to convergence or mixing with other sewer lines, resulting in samples specific to individual catchments with defined areas. The 13 sewershed catchments selected comprise 118,832 connections to the network throughout the city, representing 84.7 % (534,747 individuals) of the total population. The number of COVID19-related exposure and symptoms cases in each area were registered using an application developed for smartphones by the provincial government. Geographical coordinates provided by the devices were recorded, and consequently, it was possible to geolocalise all app-cases and track them down to which of the 13 sampling catchments belonged. RNA fragments of SARS-CoV-2 were detected in every site since the beginning of the monitoring, anticipating viral circulation in the population. Over the course of the 21-week study, the concentrations of SARS-CoV-2 ranged between 1.77 × 104 and 4.35 × 107 genome copies/L. There was a correspondence with the highest viral load in wastewater and the peak number of cases reported by the app for each catchment. The associations were evaluated with correlation analysis. The viral loads of SARS-CoV-2 in wastewater were a feasible means to describe the trends of COVID-19 infections. Surveillance at sewershed scale, provided reliable and strategic information that could be used by local health stakeholders to manage the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Pandemias , Argentina/epidemiología , Aguas Residuales
4.
Sci Total Environ ; 865: 161210, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581294

RESUMEN

Wastewater-based epidemiology (WBE) is an approach with the potential to complement clinical surveillance systems. Using WBE, it is possible to carry out an early warning of a possible outbreak, monitor spatial and temporal trends of infectious diseases, produce real-time results and generate representative epidemiological information in a territory, especially in areas of social vulnerability. Despite the historical uses of this approach, particularly in the Global Polio Eradication Initiative, and for other pathogens, it was during the COVID-19 pandemic that occurred an exponential increase in environmental surveillance programs for SARS-CoV-2 in wastewater, with many experiences and developments in the field of public health using data for decision making and prioritizing actions to control the pandemic. In Latin America, WBE was applied in heterogeneous contexts and with emphasis on populations that present many socio-environmental inequalities, a condition shared by all Latin American countries. This manuscript addresses the concepts and applications of WBE in public health actions, as well as different experiences in Latin American countries, and discusses a model to implement this surveillance system at the local or national level. We emphasize the need to implement this sentinel surveillance system in countries that want to detect the early entry and spread of new pathogens and monitor outbreaks or epidemics of infectious agents in their territories as a complement of public health surveillance systems.


Asunto(s)
COVID-19 , Monitoreo Epidemiológico Basado en Aguas Residuales , Humanos , América Latina/epidemiología , Pandemias/prevención & control , COVID-19/epidemiología , SARS-CoV-2 , Brotes de Enfermedades/prevención & control
5.
Parasitol Res ; 121(12): 3693-3699, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36149500

RESUMEN

The quality of many freshwater environments is impacted by human activities, so that many rivers may represent a vehicle for the transmission of health-related microorganisms. This work aimed to isolate and identify genetically free-living amoeba (FLA) of the genus Acanthamoeba from a recreational river in Salta, Argentina, and isolate, if possible, an endocytobiont. Sampling took place at four points (P1-P4) throughout the river in the winter and the summer seasons. Free-living amoebae and Acanthamoeba were recovered from 20-L water concentrated through an ultrafiltration system. Isolation was performed in agar plates, confirmation of Acanthamoeba genus by PCR, and fellow identification and classification based on their sequence analyses. High concentrations of indicator bacteria were found especially in P2, which is intensively used for recreation. Out of a total of 29 FLA isolations, 9 were identified as Acanthamoeba genotype T4 subtype A, the most frequent genotype found in nature and associated with causing human disease. From an axenic culture of Acanthamoeba spp. (KY751412), a bacterial endocytobiont was isolated, and identified as Stenotrophomonas maltophilia. The endocytobiont showed resistance and intermediate resistance to a wide range of widely used antibiotics. Results were in concordance with the cosmopolitan behavior of Acanthamoeba, and showed the importance of studying this group of amoebae and related microorganisms in recreational environments.


Asunto(s)
Acanthamoeba , Amoeba , Humanos , Amoeba/microbiología , Agua Dulce , Bacterias , Ríos
6.
Sci Total Environ ; 848: 157707, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35908692

RESUMEN

The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Poliestirenos , Ribonucleasa P , Ríos , Aguas Residuales
7.
Rev. argent. microbiol ; 54(2): 1-10, jun. 2022. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1407175

RESUMEN

Resumen La velocidad de diseminación del COVID-19 en el mundo llevó a que los países afectados cerraran sus fronteras y tomaran medidas de distanciamiento social. Después de seis meses de que la enfermedad fuera declarada pandemia, muchos países están tomaron medidas de flexibilización del aislamiento, aunque sin una vacuna o un medicamento capaz de enfrentar la infección por el SARS-CoV-2, la situación podría revertirse en cualquier momento. El objetivo del presente trabajo fue proponer un algoritmo de decisión tendiente a optimizar las detecciones de casos asintomáticos y administrar la cuarentena de una manera estratégica, para así evitar la diseminación del virus y tender hacia una normalidad administrada. Se elaboró una propuesta tentativa de optimización y ordenamiento de pruebas de detección del SARS-CoV-2, basada en el análisis de muestras compuestas reunidas a partir de aquellas tomadas de manera individual a personas asintomáticas que integran cohortes de interés. Se definieron cohortes según su función en la sociedad o grado de vulnerabilidad. El algoritmo contempla variables como la prioridad de la cohorte, el número de integrantes de los grupos de análisis dentro de cada cohorte, el contacto intragrupal e intergrupal, la vulnerabilidad al contagio por la actividad desarrollada y el tiempo transcurrido desde que se realizó la prueba por última vez. Se ilustró la propuesta con cohortes hipotéticas definidas, con un único grupo de análisis para simplificar, y se comprobó que la aplicación de la herramienta permite establecer de una manera racional un orden de prioridad para realizar las pruebas en grupos críticos de la sociedad. Esta herramienta permitirá optimizar recursos y disminuir el impacto de la enfermedad en la salud, la sociedad y la economía de una región.


Abstract The rapid spread of COVID-19 throughout the world, has led most of the affected countries to close their borders and implement some form of lockdown. Six months after the pandemic started, many countries made decisions tending to relax the lockdown, although wit-hout a vaccine or treatment capable of confronting SARS-CoV-2 infection, the situation could be reversed at any time. In this context, the aim of this work was to propose a decision algorithm that will allow to optimize asymptomatic case detections and strategically manage quarantine to prevent the spread of the virus and drive the transition to a managed new normal. This tentative proposal was developed for optimizing and ordering the number of tests for the detection of SARS-CoV-2, analyzing composite samples (group analysis) combining with those samples individually taken from asymptomatic members of cohorts of interest. Cohorts were defined according to their critical role in society and/or their vulnerability. The algorithm includes variables such as cohort priority, number of cohort members in the analysis groups, intra-and intergroup contact, vulnerability to contagion due to the activity performed, and time elapsed since last testing. The proposed tool was illustrated with defined hypothetical cohorts, in which, for the sake of simplification, only one analysis group was considered. The application of this tool allowed to establish in a rational way a priority order to test critical groups in society. Furthermore, this tool would help to optimize resources, reducing the impact on a region's health, society, and economy.

8.
Rev Argent Microbiol ; 54(2): 125-133, 2022.
Artículo en Español | MEDLINE | ID: mdl-33610387

RESUMEN

The rapid spread of COVID-19 throughout the world, has led most of the affected countries to close their borders and implement some form of lockdown. Six months after the pandemic started, many countries made decisions tending to relax the lockdown, although without a vaccine or treatment capable of confronting SARS-CoV-2 infection, the situation could be reversed at any time. In this context, the aim of this work was to propose a decision algorithm that will allow to optimize asymptomatic case detections and strategically manage quarantine to prevent the spread of the virus and drive the transition to a managed new normal. This tentative proposal was developed for optimizing and ordering the number of tests for the detection of SARS-CoV-2, analyzing composite samples (group analysis) combining with those samples individually taken from asymptomatic members of cohorts of interest. Cohorts were defined according to their critical role in society and/or their vulnerability. The algorithm includes variables such as cohort priority, number of cohort members in the analysis groups, intra-and intergroup contact, vulnerability to contagion due to the activity performed, and time elapsed since last testing. The proposed tool was illustrated with defined hypothetical cohorts, in which, for the sake of simplification, only one analysis group was considered. The application of this tool allowed to establish in a rational way a priority order to test critical groups in society. Furthermore, this tool would help to optimize resources, reducing the impact on a region's health, society, and economy.


Asunto(s)
COVID-19 , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Humanos , Pandemias/prevención & control , Cuarentena , SARS-CoV-2
9.
An Acad Bras Cienc ; 93(suppl 3): e20191430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34378635

RESUMEN

Random amplified polymorphic DNA-PCR (RAPD-PCR) is a technique successfully used to generate characteristic fingerprints of different bacteria. Bacillus is a genus that includes heterogeneous species, thus a combination of different techniques is essential for their identification. Here we used RAPD-PCR methodology to distinguish among genetically similar strains and to evaluate the genetic diversity of Bacillus species from the Salar del Hombre Muerto, in the Northwest of Argentina. The RAPD-PCR used allowed obtaining different amplification profiles for each Bacillus species and strains. By comparing the fingerprint profiles, we could observe that some of the salt flat isolates showed similar profiles than identified strains. As expected, the bacilli group isolated revealed a wide heterogeneity. RAPD-PCR was found to be a quick and reliable technique to evaluate the diversity of Bacillus strain and was successfully applied to characterize the genetic diversity present in the Salar del Hombre Muerto.


Asunto(s)
Bacillus , Bacillus/genética , Bacterias , ADN , Variación Genética/genética , Reacción en Cadena de la Polimerasa , Técnica del ADN Polimorfo Amplificado Aleatorio
10.
Sci Total Environ ; 785: 147290, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940405

RESUMEN

Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.


Asunto(s)
Micrococcus luteus , Proteómica , Argentina , Genómica , Litio
11.
Ecotoxicol Environ Saf ; 218: 112273, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33940441

RESUMEN

The aim of the study was to characterize halotolerant bacteria and to evaluate their plant growth promotion potential on chia and quinoa seedlings under saline stress. Isolated microorganisms were evaluated for nitrogen fixation, phosphate solubilization, and production of siderophores and indole acetic acid. Three strains and two consortia were selected: Halomonas sp. (SFS), Micrococcus luteus (SA211), Bacillus sp. (HX11), C1 (SA211 + SFS), and C2 (SA211 + HX11). In vitro assays using water agar and half-strength Murashige-Skoog plates showed that an increase in salinity led to an increased seedlings mortality and a decrease in germination (lower than 40%), in total length (varying between 16% and 87% decreases), root length (from 60% to 92% lesser length) and dry weight (from 7% to 86% lower weight). Also, the relative growth index (RGI) decreased for both crops in most treatments, except those with HX11 and C2. These treatments had the highest growth parameters and RGI values in presence of high salinity in chia (50 and 100 mmol/L NaCl) and quinoa (200 and 400 mmol/L NaCl). SA211, the highest producer of indole acetic acid, showed a detrimental effect and anomalous phenotype on plants. Our results suggest that Bacillus sp. HX11, with multiple plant growth promotion traits and tolerance to saline stress, has a great potential as a bioinoculant in saline conditions and could be used as a biofertilizer for crop production.

12.
Sci Total Environ ; 781: 146400, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33794459

RESUMEN

The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease Mpro, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For Mpro were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for Mpro. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.


Asunto(s)
COVID-19 , Pandemias , Antivirales , Humanos , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Fitoquímicos , Inhibidores de Proteasas , ARN Viral , SARS-CoV-2 , Proteínas Virales
13.
J Water Health ; 18(3): 409-415, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32589625

RESUMEN

Fecal pollution of water is a serious concern because it is associated with the transmission of pathogens. The aim of this study was to analyze the occurrence of group A rotavirus (RVA) in surface waters from the Arias-Arenales River in Salta, a northern city in Argentina, and to define possible sources of fecal viral pollution. A total of 116 water samples were analyzed and RVA was detected in 3.4% (95% CI: 0.1-7.0%), with concentrations ranging from 1.9 × 105 to 3.8 × 106 genome copies per liter. RVA strains were characterized as G1P[8], G4P[8] and G9P[8], which are common genotypes circulating in the local population. The Arias-Arenales River presented unusual and sporadic contamination by RVA, originated from stormwater discharges and a variety of non-identified sources, and support the essential need of viral indicators for enhanced monitoring of water quality.


Asunto(s)
Agua Dulce/virología , Infecciones por Rotavirus , Rotavirus , Argentina , Genotipo , Humanos , Filogenia
14.
Sci Total Environ ; 728: 138731, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339835

RESUMEN

Gray water constitutes an important fraction of total wastewater. Some of the most problematic compounds in gray water are the anionic surfactants used as an ingredient for domestic and industrial soaps and detergents. The alkylbenzene sulfonates used in commercially available formula are highly complex mixtures of linear (LAS) and branched (BAS) molecules. LAS are classified generally as biodegradable, although their widespread use generates accumulation in the environment. Docking tools, widely used in recent years in the bioremediation field, allow molecular modeling of the ligand-enzyme interaction, which is key to understanding and evaluating the possibility of biodegradation. In this work, molecular details that allow us to establish a biodegradation pattern for some alkylbenzene sulfonates were elucidated. Two hydrogen bonds, key for the anchorage of surfactants to the monooxygenase active site involved in the initial biodegradation, were found. These bonds determine the way surfactants locate in the hydrophobic pocket of the enzyme affecting the biodegradation rate in a structurally dependent manner. For C10 to C12 linear isomers, the degradation rate increased together with the length of the hydrocarbon chain. For C13 and C14 isomers, steric difficulties to accommodate the surfactant molecule in the catalytic site were observed. For branched chain isomers, little or no biodegradation was found. In addition, biodegradation was lower in mixtures than for the pure isomers. These results will allow an intelligent design of this family of anionic surfactants to attenuate their contaminating effects in waters and soils. This study constitutes, to the best of our knowledge, a novel contribution towards the design of environmentally friendly surfactants with higher probabilities of being biodegraded to complete mineralization.


Asunto(s)
Ácidos Alcanesulfónicos , Alcanosulfonatos , Biodegradación Ambiental , Filosofías Religiosas , Tensoactivos
15.
Int J Hyg Environ Health ; 223(1): 159-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31564507

RESUMEN

Although water quality from freshwater recreational aquatic environments (RAEs) has been long analyzed worldwide, little information is available about their sediments. The aim of this work was to study the physicochemical and bacteriological quality of water and sediment under different seasonal events. For that, Wierna River (WR) and General Belgrano reservoir (GB) were used as freshwater RAEs models. A total of 33 water and 33 sediment samples (15 from WR and 18 from GB from each phase) were collected and analyzed. Physicochemical variables in water (pH, turbidity, dissolved oxygen, temperature, conductivity, alkalinity, hardness) and sediments (organic matter, humidity, ash, and conductivity) were measured. For the bacteriological characterization, total aerobic mesophiles, total and thermotolerant coliforms, E. coli, enteroccocci, Salmonella spp., and Pseudomonas aeruginosa were evaluated using culture-based methods. Universal and human Bacteroides were also quantified by real-time PCR. Univariate (Kruskall-Wallis), bivariate (Spearman correlation), and multivariate (cluster analysis, principal component analysis) statistical techniques were applied for data analysis. All bacterial indicators were almost two-logs higher in sediments than in water, for both RAEs. Also, due to rainfall events and recreational activities, sediments were resuspended in surface water exceeding in most cases the limit values established by international regulation for bacteria. Significant correlation was observed between culturable bacteria and turbidity (p < 0.05) supporting this. We found that while physicochemical variables clustered samples by geographical location in water and sediments, microbiological aggrupation in water was mostly driven by seasonal events. No aggrupation was observed when using microbiological variables in sediments. Thus, geographical location, type of water and sediments, and seasonal events influenced on RAEs quality. Including sediment analysis during RAEs monitoring campaigns is essential as it will allow knowing the real health risk to which bathers are exposed and proposing solutions to mitigate it.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/microbiología , Contaminación del Agua/análisis , Ecosistema , Agua Dulce , Ríos/microbiología , Microbiología del Agua , Contaminación del Agua/estadística & datos numéricos , Calidad del Agua
16.
Water Res ; 154: 45-53, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771706

RESUMEN

Recreational waters are a source of many diseases caused by human viral pathogens, including norovirus genogroup II (NoV GII) and enterovirus (EV). Water samples from the Arenales river in Salta, Argentina, were concentrated by ultrafiltration and analyzed for the concentrations of NoV GII and EV by quantitative PCR. Out of 65 samples, 61 and 59 were non-detects (below the Sample Limit of Detection limit, SLOD) for EV and NoV GII, respectively. We hypothesized that a finite number of environmental samples would lead to different conclusions regarding human health risks based on how data were treated and fitted to existing distribution functions. A quantitative microbial risk assessment (QMRA) was performed and the risk of infection was calculated using: (a) two methodological approaches to find the distributions that best fit the data sets (methods H and R), (b) four different exposure scenarios (primary contact for children and adults and secondary contact by spray inhalation/ingestion and hand-to-mouth contact), and (c) five alternatives for treating censored data. The risk of infection for NoV GII was much higher (and exceeded in most cases the acceptable value established by the USEPA) than for EV (in almost all the scenarios within the recommended limit), mainly due to the low infectious dose of NoV. The type of methodology used to fit the monitoring data was critical for these datasets with numerous non-detects, leading to very different estimates of risk. Method R resulted in higher projected risks than Method H. Regarding the alternatives for treating censored data, replacing non-detects by a unique value like the average or median SLOD to simplify the calculations led to the loss of information about the particular characteristics of each sample. In addition, the average SLOD was highly impacted by extreme values (due to events such as precipitations or point source contamination). Instead, using the SLOD or half- SLOD captured the uniqueness of each sample since they account for the history of the sample including the concentration procedure and the detection method used. Finally, substitution of non-detects by Zero is not realistic since a negative result would be associated with a SLOD that can change by developing more efficient and sensitive methodology; hence this approach would lead to an underestimation of the health risk. Our findings suggest that in most cases the use of the half-SLOD approach is appropriate for QMRA modeling.


Asunto(s)
Enterovirus , Norovirus , Virus , Niño , Humanos , Medición de Riesgo , Ríos
17.
Environ Geochem Health ; 41(2): 529-543, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29995192

RESUMEN

The Salar del Hombre Muerto is a flat salt with great microbial activity despite the existing extreme conditions like high altitude, lack of water, low level of oxygen, high radiation and high concentration of sodium and lithium chloride. Despite these unfavorable conditions, we found microbial diversity with the presence of fungi, algae, and bacteria. From aqueous solutions and soil samples, a total of 238 bacteria were isolated and 186 of them were able to grow in the presence of salt. About 30% of the strains showed the ability to grow in solid medium proximally to a LiCl solution close to saturation (636 g/L). These isolates were characterized taking into account the morphology, Gram stain, ability to form biofilms and to produce pigments, and mainly according to the tolerance against lithium chloride. Bacillus was predominant among the most tolerant 26 microorganisms found, followed by Micrococcus and Brevibacterium. Members of the genera Kocuria, Curtobacterium and Halomonas were also represented among the bacteria with tolerance to 30 and 60 g/L of LiCl in defined liquid medium. All the capacities found in these microorganisms make them extremely interesting for biotechnological applications.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Cloruro de Litio/toxicidad , Microbiología del Suelo , Argentina , Bacillus/efectos de los fármacos , Bacillus/genética , Bacillus/aislamiento & purificación , Bacterias/genética , Filogenia , Suelo/química
18.
J Environ Chem Eng ; 5(4): 3373-3383, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29503806

RESUMEN

Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.

19.
Mar Biotechnol (NY) ; 18(3): 396-408, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27164864

RESUMEN

Shewanella sp. G5, a psychrotolerant marine bacterium, has a cold-shock protein (CspA) and three ß-glucosidases, two of which were classified in the glycosyl hydrolase families 1 and 3 and are encoded by bgl-A and bgl genes, respectively. Shewanella sp. G5 was cultured on Luria-Bertani (LB) and Mineral Medium Brunner (MMB) media with glucose and cellobiose at various temperatures and pH 6 and 8. Relative quantification of the expression levels of all three genes was studied by real-time PCR with the comparative Ct method (2(-ΔΔCt)) using the gyrB housekeeping gene as a normalizer. Results showed that the genes had remarkably different genetic expression levels under the conditions evaluated, with increased expression of all genes obtained on MMB with cellobiose at 30 °C. Specific growth rate and specific ß-glucosidase activity were also determined for all the culture conditions. Shewanella sp. G5 was able to grow on both media at 4 °C, showing the maximum specific growth rate on LB with cellobiose at 37 °C. The specific ß-glucosidase activity obtained on MMB with cellobiose at 30 °C was 25 to 50 % higher than for all other conditions. At pH 8, relative activity was 34, 60, and 63 % higher at 30 °C than at 10 °C, with three peaks at 10, 25, and 37 °C on both media. Enzyme activity increased by 61 and 47 % in the presence of Ca(2+) and by 24 and 31 % in the presence of Mg(2+) on LB and MMB at 30 °C, respectively, but it was totally inhibited by Hg(2+), Cu(2+), and EDTA. Moreover, this activity was slightly decreased by SDS, Zn(2+), and DTT, all at 5 mM. Ethanol (14 % v/v) and glucose (100 mM) also reduced the activity by 63 and 60 %, respectively.


Asunto(s)
Proteínas Bacterianas/genética , Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Microbiología Industrial , Shewanella/genética , beta-Glucosidasa/genética , Adaptación Fisiológica/genética , Organismos Acuáticos , Proteínas Bacterianas/metabolismo , Cationes Bivalentes , Celobiosa/farmacología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Fermentación , Genes Esenciales , Glucosa/metabolismo , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Magnesio/metabolismo , Salinidad , Shewanella/efectos de los fármacos , Shewanella/enzimología , Shewanella/crecimiento & desarrollo , Temperatura , beta-Glucosidasa/metabolismo
20.
Chem Eng Res Des ; 94: 524-537, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26166926

RESUMEN

A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...