Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Res (Camb) ; 96: e009, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25579084

RESUMEN

In order to address the unmet needs and create opportunities that benefit patients with rare disease in India, a group of volunteers created a not-for-profit organization named Organization for Rare Diseases India (ORDI; www.ordindia.org). ORDI plans to represent the collective voice and advocate the needs of patients with rare diseases and other stakeholders in India. The ORDI team members come from diverse backgrounds such as genetics, molecular diagnostics, drug development, bioinformatics, communications, information technology, patient advocacy and public service. ORDI builds on the lessons learned from numerous similar organizations in the USA, European Union and disease-specific rare disease foundations in India. In this review, we provide a background on the landscape of rare diseases and the organizations that are active in this area globally and in India. We discuss the unique challenges in tackling rare diseases in India, and highlight the unmet needs of the key stakeholders of rare diseases. Finally, we define the vision, mission, goals and objectives of ORDI, identify the key developments in the health care context in India and welcome community feedback and comments on our approach.


Asunto(s)
Accesibilidad a los Servicios de Salud/economía , Organizaciones sin Fines de Lucro/organización & administración , Defensa del Paciente , Enfermedades Raras/epidemiología , Enfermedades Raras/terapia , Humanos , India/epidemiología , Objetivos Organizacionales
2.
Methods Mol Biol ; 884: 319-34, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688717

RESUMEN

RNA expression profiles produced by next-generation sequencing (NGS) technology (RNA-seq) allow comprehensive investigation of transcribed sequences within a cell or tissue. RNA-seq is rapidly becoming more cost-effective for transcriptome profiling. However, its usage will expand dramatically if one starts with low amount of RNA and obtains transcript directionality during the analysis. Here, we describe a detailed protocol for the creation of a directional RNA-seq library from 100 ng of starting total RNA.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Retina/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Biblioteca de Genes , Ratones , ARN/química , ARN/aislamiento & purificación
3.
Methods Mol Biol ; 884: 335-51, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688718

RESUMEN

In humans, protein-coding exons constitute 1.5-1.7% of the human genome. Targeted sequencing of all coding exons is termed as exome sequencing. This method enriches for coding sequences at a genome-wide scale from 3 µg of DNA in a hybridization capture. Exome analysis provides an excellent opportunity for high-throughput identification of disease-causing variations without the prior knowledge of linkage or association. A comprehensive landscape of coding variants could also offer valuable mechanistic insights into phenotypic heterogeneity and genetic epistasis.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN/métodos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Control de Calidad
4.
Am J Hum Genet ; 82(2): 333-43, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18252214

RESUMEN

The mutation 3243A-->G is the most common heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutation in humans, but it is not understood why the proportion of this mutation decreases in blood during life. Changing levels of mtDNA heteroplasmy are fundamentally related to the pathophysiology of the mitochondrial disease and correlate with clinical progression. To understand this process, we simulated the segregation of mtDNA in hematopoietic stem cells and leukocyte precursors. Our observations show that the percentage of mutant mtDNA in blood decreases exponentially over time. This is consistent with the existence of a selective process acting at the stem cell level and explains why the level of mutant mtDNA in blood is almost invariably lower than in nondividing (postmitotic) tissues such as skeletal muscle. By using this approach, we derived a formula from human data to correct for the change in heteroplasmy over time. A comparison of age-corrected blood heteroplasmy levels with skeletal muscle, an embryologically distinct postmitotic tissue, provides independent confirmation of the model. These findings indicate that selection against pathogenic mtDNA mutations occurs in a stem cell population.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Modelos Biológicos , Mutación/genética , Selección Genética , Factores de Edad , Simulación por Computador , ADN Mitocondrial/sangre , Células Madre Hematopoyéticas , Humanos , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia de Lisina/genética
5.
Nat Genet ; 40(2): 249-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223651

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.


Asunto(s)
ADN Mitocondrial/química , ADN Mitocondrial/genética , Desarrollo Embrionario , Genotipo , Mitocondrias/química , Alelos , Animales , Blastocisto/química , Blastocisto/citología , Blastómeros/química , Linaje de la Célula , Proteínas Cromosómicas no Histona , Simulación por Computador , Cruzamientos Genéticos , Replicación del ADN , Transferencia de Embrión , Embrión de Mamíferos/química , Embrión de Mamíferos/citología , Femenino , Dosificación de Gen , Frecuencia de los Genes , Marcadores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos , Ratones Transgénicos , Microinyecciones , Modelos Genéticos , Oocitos/química , Polimorfismo Genético , Embarazo , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...