Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 12(47): 30365-30380, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36337983

RESUMEN

The application of nickel complexes of nicotinic acid hydrazide ligand as a potential gas-sensor and adsorbent material for H2S gas was examined using appropriate density functional theory (DFT) calculations with the ωB97XD/Gen/6-311++G(d,p)/LanL2DZ method. The FT-IR spectrum of the synthesized ligand exhibited a medium band at 3178 cm-1 attributed to ν(NH) stretching vibrations and strong bands at 1657 and 1600 cm-1 corresponding to the presence of ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration modes. In the spectrum of the nickel(ii) complex, the ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration bands experience negative shifts to 1605 cm-1 and 1580 cm-1, respectively, compared to the ligand. This indicates the coordination of the carbonyl oxygen and the azomethine nitrogen atoms to the Ni2+ ion. Thus, the sensing mechanism of the complexes indicated a short recovery time and that the work function value increases for all complexes, necessitating an excellent H2S gas sensor material. Thus, a profound assertion was given that the complex sensor surfaces exhibited very dense stability with regards to their relevant binding energies corresponding to various existing studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...