Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(7): 102128, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700823

RESUMEN

The sirtuins and histone deacetylases are the best characterized members of the lysine deacetylase (KDAC) enzyme family. Recently, we annotated the "orphan" enzyme ABHD14B (α/ß-hydrolase domain containing protein # 14B) as a novel KDAC and showed this enzyme's ability to transfer an acetyl-group from protein lysine residue(s) to coenzyme-A to yield acetyl-coenzyme-A, thereby, expanding the repertoire of this enzyme family. However, the role of ABHD14B in metabolic processes is not fully elucidated. Here, we investigated the role of this enzyme using mammalian cell knockdowns in a combined transcriptomics and metabolomics analysis. We found from these complementary experiments in vivo that the loss of ABHD14B results in significantly altered glucose metabolism, specifically the decreased flux of glucose through glycolysis and the citric acid cycle. Further, we show that depleting hepatic ABHD14B in mice also results in defective systemic glucose metabolism, particularly during fasting. Taken together, our findings illuminate the important metabolic functions that the KDAC ABHD14B plays in mammalian physiology and poses new questions regarding the role of this hitherto cryptic metabolism-regulating enzyme.


Asunto(s)
Glucosa/metabolismo , Histona Desacetilasas , Lisina , Acetilación , Animales , Coenzima A/metabolismo , Histona Desacetilasas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Ratones
2.
Biophys J ; 120(7): 1231-1246, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33217386

RESUMEN

Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme. By analyzing the genomic locus, we could express and purify Rv0890c and find that the NB-ARC domain binds ATP and ADP, but does not hydrolyze these nucleotides. Using systematic evolution of ligands by exponential enrichment (SELEX), we identified DNA sequences that bound to the HTH domain of Rv0890c. Uniquely, the HTH domain could also bind RNA. Atomic force microscopy revealed that binding of Rv0890c to DNA was sequence independent, and binding of adenine nucleotides to the protein induced the formation of higher order structures that may represent biocrystalline nucleoids. This represents the first characterization of this group of proteins and their unusual biochemical properties warrant further studies into their physiological roles in future.


Asunto(s)
Adenilil Ciclasas , Proteínas Bacterianas , Mycobacterium/enzimología , Adenilil Ciclasas/genética , ADN/genética
3.
Proc Natl Acad Sci U S A ; 117(12): 6890-6900, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152092

RESUMEN

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.


Asunto(s)
Gluconeogénesis , Homeostasis , Hiperglucemia/prevención & control , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Sirtuina 1/metabolismo , Acetilglucosamina/metabolismo , Envejecimiento/fisiología , Animales , Ayuno , Glicosilación , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Resistencia a la Insulina , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Fosforilación , Sirtuina 1/química , Análisis Espacio-Temporal
4.
Biochemistry ; 59(2): 183-196, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31478652

RESUMEN

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.


Asunto(s)
Acetiltransferasas/metabolismo , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Animales , Dominio Catalítico , Línea Celular Tumoral , Coenzima A/química , Pruebas de Enzimas , Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Hidrolasas , Ratones Endogámicos C57BL , Conejos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
5.
J Med Chem ; 62(14): 6785-6795, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31241934

RESUMEN

The alarming global rise in fatalities from multidrug-resistant Staphylococcus aureus (S. aureus) infections has underscored a need to develop new therapies to address this epidemic. Chemoproteomics is valuable in identifying targets for new drugs in different human diseases including bacterial infections. Targeting functional cysteines is particularly attractive, as they serve critical catalytic functions that enable bacterial survival. Here, we report an indole-based quinone epoxide scaffold with a unique boat-like conformation that allows steric control in modulating thiol reactivity. We extensively characterize a lead compound (4a), which potently inhibits clinically derived vancomycin-resistant S. aureus. Leveraging diverse chemoproteomic platforms, we identify and biochemically validate important transcriptional factors as potent targets of 4a. Interestingly, each identified transcriptional factor has a conserved catalytic cysteine residue that confers antibiotic tolerance to these bacteria. Thus, the chemical tools and biological targets that we describe here prospect new therapeutic paradigms in combatting S. aureus infections.


Asunto(s)
Benzoquinonas/farmacología , Compuestos Epoxi/farmacología , Indoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Resistencia a la Vancomicina/efectos de los fármacos , Antibacterianos/farmacología , Benzoquinonas/química , Descubrimiento de Drogas , Compuestos Epoxi/química , Humanos , Indoles/química , Modelos Moleculares , Proteómica , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacología
6.
Nat Chem Biol ; 15(2): 169-178, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643283

RESUMEN

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.


Asunto(s)
Monoacilglicerol Lipasas/fisiología , Fosfatidilserinas/metabolismo , Animales , Línea Celular , Humanos , Lipasa/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , Monoacilglicerol Lipasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Fosfatidilserinas/fisiología , Células RAW 264.7 , Especies Reactivas de Oxígeno
7.
J Biol Chem ; 293(44): 16953-16963, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237167

RESUMEN

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the Abhd12 gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12. The substrate profiling study for ABHD12 suggested that this enzyme requires glycosylation for optimal activity and that it has a strong preference for very-long-chain lipid substrates. We further validated this substrate profile against brain membrane lysates generated from WT and ABHD12 knockout mice. Finally, using cellular organelle fractionation and immunofluorescence assays, we show that mammalian ABHD12 is enriched on the endoplasmic reticulum membrane, where most of the very-long-chain fatty acids are biosynthesized in cells. Taken together, our findings provide a biochemical explanation for why very-long-chain lipids (such as lysophosphatidylserine lipids) accumulate in the brains of ABHD12 knockout mice, which is a murine model of PHARC.


Asunto(s)
Ataxia/enzimología , Catarata/enzimología , Lípidos/química , Monoacilglicerol Lipasas/química , Polineuropatías/enzimología , Retinitis Pigmentosa/enzimología , Animales , Ataxia/genética , Ataxia/metabolismo , Encéfalo/enzimología , Encéfalo/metabolismo , Catarata/genética , Catarata/metabolismo , Humanos , Cinética , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Polineuropatías/genética , Polineuropatías/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Especificidad por Sustrato
8.
PeerJ ; 3: e882, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25922789

RESUMEN

GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...