Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 148: 213346, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36963344

RESUMEN

Controlling the growth of biofilm on orthodontic material has become a difficult challenge in modern dentistry. The antibacterial efficacy of currently used orthodontic material becomes limited due to the higher affinity of oral microbial flora for plaque formation on the material surface. Thus it is crutial to device an efficient strategy to prevent plaque buildup caused by pathogenic microbiota. In this work, we have fabricated a bioactive orthodontic wire using titanium nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). AgNPs were synthesized from the extracts of Ocimum sanctum, Ocimum tenuiflorum, Solanum surattense, and Syzygium aromaticum, while the TiO2NPs were synthesized by the Sol-Gel method. The nanoparticles were characterized by various biophysical techniques. The surface of the dental wire was molded by functionalizing these AgNPs followed by an additional coating of TiO2NPs. Functionalized dental wires were found to counteract the formation of tenacious intraoral biofilm, and showed an enhanced anti-bacterial effect against Multi-Drug Resistant (MDR) bacteria isolated from patients with various dental ailments. Data revealed that such surface coating counteracts the bacterial pathogens by inducing the leakage of Ag ions which eventually disrupts the cell membrane as confirmed from TEM micrographs. The results offer a significant opportunity for innovations in developing nanoparticle-based formulations to modify or fabricate an effective orthodontic material.


Asunto(s)
Nanopartículas del Metal , Humanos , Nanopartículas del Metal/uso terapéutico , Alambres para Ortodoncia , Plata/farmacología , Antibacterianos/farmacología , Biopelículas , Bacterias
2.
RSC Adv ; 12(16): 9793-9814, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424920

RESUMEN

Background: A novel strategy such as conjugation of amino, Schiff's bases, and thiadiazole moieties to the cinnamic acid nucleus has been adopted in this study to discover new molecules that target the dengue envelope protein (DENVE). Aim: Among the different domains of dengue virus envelope protein (PDB ID 1OKE), we have selected a ligand-binding domain for our structure-based drug design. The designed compounds have also been docked against DENVE protein. Methodology: Based on the in silico results and synthetic feasibility, three different schemes were used to synthesize twenty-three novel cinnamic acid derivatives. Sci-finder ascertained their novelty. The synthesized derivatives were consistent with their assigned spectra. The compounds were further evaluated for their larvicidal activity and histopathological analysis. Multiple linear regression analysis was performed to derive the QSAR model, which was further evaluated internally and externally for the prediction of activity. Results and discussion: Four compounds, namely CA 2, CA 14, ACA 4, and CATD 2, effectively showed larvicidal activity after 24, 48, and 72 h exposure; particularly, compound CA2 showed potent larvicidal activity with LC50 of 82.15 µg ml-1, 65.34 µg ml-1, and 38.68 µg ml-1, respectively, whereas intermittent stages, causes of abscess in the gut, and siphon regions were observed through histopathological studies. Conclusion: Our study identified some novel chemical scaffolds as effective DENVE inhibitors with efficacious anticipated pharmacokinetic profiles, which can be modified further.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA