Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407339, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714494

RESUMEN

Two-electron oxidative addition is one of the most important elementary reactions for d-block transition metals but it is uncommon for f-block elements. Here, we report the first examples of intermolecular oxidative addition of E-H (E = C, N) bonds to uranium(II) centers. The transient U(II) species was formed in-situ by reducing a heterometallic cluster featuring U(IV)-Pd(0) bonds with potassium-graphite (KC8). Oxidative addition of C-H or N-H bonds to the U(II) centers was observed when this transient U(II) species was treated with benzene, carbazole or 1-adamantylamine, respectively. The U(II) centers could also react with tetracene, biphenylene or N2O, leading to the formation of arene reduced U(IV) products and uranyl(VI) species via two- or four-electron processes. This study demonstrates that the intermolecular two-electron oxidative addition reactions are viable for actinide elements.

2.
Chem Sci ; 15(18): 6874-6883, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725506

RESUMEN

Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.

3.
Chem Sci ; 15(18): 6842-6852, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725514

RESUMEN

End-on binding of dinitrogen to low valent metal centres is common in transition metal chemistry but remains extremely rare in f-elements chemistry. In particular, heterobimetallic end-on N2 bridged complexes of lanthanides are unprecedented despite their potential relevance in catalytic reduction of dinitrogen. Here we report the synthesis and characterization of a series of N2 bridged heterobimetallic complexes of U(iii), Ln(iii) and Ln(ii) which were prepared by reacting the Fe dinitrogen complex [Fe(depe)2(N2)] (depe = 1,2-bis(diethylphosphino)-ethane), complex A with [MIII{N(SiMe3)2}3] (M = U, Ce, Sm, Dy, Tm) and [LnII{N(SiMe3)2}2], (Ln = Sm, Yb). Despite the lack of reactivity of the U(iii), Ln(iii) and Ln(ii) amide complexes with dinitrogen, the end-on dinitrogen bridged heterobimetallic complexes [{Fe(depe)2}(µ-η1:η1-N2)(M{N(SiMe3)2}3)], 1-M (M = U(iii), Ce(iii), Sm(iii), Dy(iii) and Tm(iii)), [{Fe(depe)2}(µ-η1:η1-N2)(Ln{N(SiMe3)2}2)], 1*-Ln (Ln = Sm(ii), Yb(ii)) and [{Fe(depe)2(µ-η1:η1-N2)}2{SmII{N(SiMe3)2}2}], 3 could be prepared. The synthetic method used here allowed to isolate unprecedented end-on bridging N2 complexes of divalent lanthanides which provide relevant structural models for the species involved in the catalytic reduction of dinitrogen by Fe/Sm(ii) systems. Computational studies showed an essentially electrostatic interaction of the end-on bridging N2 with both Ln(iii) and Ln(ii) complexes with the degree of N2 activation correlating with their Lewis acidity. In contrast, a back-bonding covalent contribution to the U(iii)-N2Fe bond was identified by computational studies. Computational studies also suggest that end-on binding of N2 to U(iii) and Ln(ii) complexes is favoured for the iron-bound N2 compared to free N2 due to the higher N2 polarization.

4.
Chemistry ; : e202401262, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777793

RESUMEN

Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4F] (2a, Cp* = η3-C5Me5, Ln = N,N,N',N'-tetramethylethylenediamine, TMEDA; 2b, Ln = N,N,N',N'-tetraethylethylenediamine, TEEDA; 2c, Cp* = η1-C5Me5, Ln = N,N,N',N'',N''-pentamethyl-diethylenetriamine, PMDTA; Ar4F = (3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4F] (3a,b, m = 1; 3c, m = 0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4F] (5b). Cation 2b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2c underwent C-H bond activation in acetonitrile to give a dinuclear µ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4F]2 (6c).

5.
J Am Chem Soc ; 146(18): 12790-12798, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38684067

RESUMEN

Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.

6.
Inorg Chem ; 63(18): 8493-8501, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38651332

RESUMEN

Oxidative addition of dihydrogen across a metal-metal bond to form reactive metal hydrides in homogeneous catalysis is known for transition metals but not for zinc(I)-zinc(I) bond as found in Carmona's eponymous dizinconene [Zn2Cp*2] (Cp* = η5-C5Me5). Dihydrogen reacted with the heteroleptic zinc(I)-zinc(I) bonded cation [(L2)Zn-ZnCp*][BAr4F] (L2 = TMEDA, N,N,N',N'-tetramethylethylenediamine, TEEDA, N,N,N',N'-tetraethylethylenediamine; ArF = 3,5-(CF3)2C6H3) under 2 bar at 80 °C to give the zinc(II) hydride cation [(L2)ZnH(thf)][BAr4F] along with zinc metal and Cp*H derived from the intermediate [Cp*ZnH]. DFT calculations show that the cleavage of dihydrogen occurs through a highly unsymmetrical transition state. Mechanistic studies agree with a heterolytic cleavage of dihydrogen as a result of the cationic charge and unsymmetrical ligand coordination. To explore the existence of zinc(I) hydride, thermally unstable hydridotriphenylborate complexes of zinc(I) [(L2)Zn(HBPh3)-ZnCp*] (L2 = TMEDA, TEEDA; TMPDA, N,N,N',N'-tetramethyl-1,3-propylenediamine) have been prepared by salt metathesis and were shown to undergo fast exchange with both BPh3 and [HBPh3]-.

7.
Chem Sci ; 15(14): 5152-5162, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577349

RESUMEN

Coupling of octahedral, terminal d1 molybdenum(v) nitrido complexes supported by a dianionic pentadentate ligand via N-N bond formation to give µ-dinitrogen complexes was found to be thermodynamically feasible but faces significant kinetic barriers. However, upon oxidation, a kinetically favored nucleophilic/electrophilic N-N bond forming mechanism was enabled to give monocationic µ-dinitrogen dimers. Computational and experimental evidence for this "oxidation-induced ambiphilic nitrido coupling" mechanism is presented. The factors influencing release of dinitrogen from the resulting µ-dinitrogen dimers were also probed and it was found that further oxidation to a dicationic species is required to induce (very rapid) loss of dinitrogen. The mechanistic path discovered for N-N bond formation and dinitrogen release follows an ECECC sequence (E = "electrochemical step"; C = "chemical step"). Experimental evidence for the intermediacy of a highly electrophilic, cationic d0 molybdenum(vi) nitrido in the N-N bond forming mechanism via trapping with an isonitrile reagent is also discussed. Together these results are relevant to the development of molecular catalysts capable of mediating ammonia oxidation to dihydrogen and dinitrogen.

8.
Chem Sci ; 15(10): 3495-3501, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455028

RESUMEN

Guanidinate homometallic rare-earth ethyl complexes [LLn(µ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(µ2-η1:η2-Et)(µ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(µ2-η1-Et)2(AlEt)]2(µ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(µ3-η1:η1:η2-C2H4)[(µ2-η1-Et)(AlEt2)(µ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(µ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.

9.
Angew Chem Int Ed Engl ; 63(23): e202318689, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38547324

RESUMEN

The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.

10.
Chemistry ; 30(27): e202400681, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417144

RESUMEN

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

11.
Chem Commun (Camb) ; 60(21): 2966-2969, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38376444

RESUMEN

The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(µ-N)2} (4).

12.
J Am Chem Soc ; 146(2): 1257-1261, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38189272

RESUMEN

Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.

13.
Chem Commun (Camb) ; 60(8): 1016-1019, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38170497

RESUMEN

Reduction of the magnesium(II) diamide [Mg(TripNON)] (TripNON = 4,5-bis(2,4,6-triisopropylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5% w/w K/KI leads to a good yield of a dianionic dimagnesium(I) species, as its potassium salt, [{K(TripNON)Mg}2]. An X-ray crystallographic analysis shows the molecule to contain a very long Mg-Mg bond (3.137(2) Å). The formation of [{K(TripNON)Mg}2] contrasts with a previously reported reduction of a magnesium(II) complex incorporating a bulkier diamide ligand, which instead afforded a magnesium-dinitrogen complex. In the current study, [{K(TripNON)Mg}2] has been shown to be a viable reagent for the reductive activation of CO, H2 and N2O.

14.
Angew Chem Int Ed Engl ; 63(6): e202317346, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100190

RESUMEN

The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.

15.
Chemistry ; 30(15): e202303949, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116910

RESUMEN

Reaction of the 1,2-disilylenes {(DipAr Am)Si}2 (DipAr Am=[(NDip)2 CAr]- , Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But (Ar') 1 a or Ph 1 b) and two abnormal N-heterocyclic silylenes, (DipAr Am)SiOCSi{(NDip)2 CAr} (Ar=Ar' 3 a or Ph 3 b) with N2 O led to formation of unprecedented examples of uncoordinated silicon analogues of carboxylic acid anhydrides, (DipAr Am)(O=)SiOSi(=O)(DipAr Am) (Ar=Ar' 2 a or Ph 2 b). Both compounds have been fully characterized, and the mechanism of formation of one explored using DFT calculations. Reduction of sila-acid anhydride 2 a with a dimagnesium(I) compound, [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[(MesNCMe)2 CH]- , Mes=mesityl), led to the one-electron reduction of the anhydride and formation of a magnesium complex of a sila-acid anhydride radical anion [(Mes Nacnac)Mg{(OSi(DipAr' Am)}2 O] 5. A combination of EPR spectroscopic studies and DFT calculations reveal the unpaired electron to largely reside on one of the amidinate ligands of the complex.

16.
Chem Sci ; 14(46): 13485-13494, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033909

RESUMEN

Understanding the role of multimetallic cooperativity and of alkali ion-binding in the second coordination sphere is important for the design of complexes that can promote dinitrogen (N2) cleavage and functionalization. Herein, we compare the reaction products and mechanism of N2 reduction of the previously reported K2-bound dinuclear uranium(iii) complex, [K2{[UIII(OSi(OtBu)3)3]2(µ-O)}], B, with those of the analogous dinuclear uranium(iii) complexes, [K(2.2.2-cryptand)][K{UIII(OSi(OtBu)3)3}2(µ-O)], 1, and [K(2.2.2-cryptand)]2[{UIII(OSi(OtBu)3)3}2(µ-O)], 2, where one or two K+ ions have been removed from the second coordination sphere by addition of 2.2.2-cryptand. In this study, we found that the complete removal of the K+ ions from the inner coordination sphere leads to an enhanced reducing ability, as confirmed by cyclic voltammetry studies, of the resulting complex 2, and yields two new species upon N2 addition, namely the U(iii)/U(iv) complex, [K(2.2.2-cryptand)][{UIII(OSi(OtBu)3)3}(µ-O){UIV(OSi(OtBu)3)3}], 3, and the N2 cleavage product, the bis-nitride, terminal-oxo complex, [K(2.2.2-cryptand)]2[{UV(OSi(OtBu)3)3}(µ-N)2{UVI(OSi(OtBu)3)2(κ-O)}], 4. We propose that the formation of these two products involves a tetranuclear uranium-N2 intermediate that can only form in the absence of coordinated alkali ions, resulting in a six-electron transfer and cleavage of N2, demonstrating the possibility of a three-electron transfer from U(iii) to N2. These results give an insight into the relationship between alkali ion binding modes, multimetallic cooperativity and reactivity, and demonstrate how these parameters can be tuned to cleave and functionalize N2.

17.
Inorg Chem ; 62(45): 18543-18552, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37906233

RESUMEN

We demonstrate the catalytic role of aluminum and boron centers in aluminum borohydride [(2-Me2CH2C6H4)(C6H5)Al(µ-H)2B(C6H5)2] (6) during carbon dioxide (CO2) hydrosilylation. Preliminary investigations into CO2 reduction using [(2-Me2NCH2C6H4)(H)Al(µ-H)]2 (1) and [Ph3C][B(3,5-C6H3Cl2)4] (2) in the presence of Et3SiH and PhSiH3 resulted in CH2(OSiR3)2 and CH3OSiR3, which serve as formaldehyde and methanol surrogates, respectively. In pursuit of identifying the active catalytic species, three compounds, B(3,5-C6H3Cl2)3 (3), [(2-Me2NCH2C6H4)(3,5-C6H3Cl2)Al(µ-H)2B(3,5-C6H3Cl2)2] (4), and [(2-Me2NCH2C6H4)2Al(THF)][B(3,5-C6H3Cl2)4] (5), were isolated. Among compounds 2-5, the highest catalytic conversion was achieved by 4. Further, 4 and 6 were prepared in a straightforward method by treating 1 with 3 and BPh3, respectively. 6 was found to be in equilibrium with 1 and BPh3, thus making the catalytic process of 6 more efficient than that of 4. Computational investigations inferred that CO2 reduction occurs across the Al-H bond, while Si-H activation occurs through a concerted mechanism involving an in situ generated aluminum formate species and BPh3.

18.
Org Lett ; 25(36): 6730-6735, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37671845

RESUMEN

Transition-metal-catalyzed cross-coupling of propargylic electrophiles and Grignard reagents provides densely functionalized products that are extremely useful synthetic intermediates. However, examples of conversion of propargylic derivatives to form propargyl compounds remain limited due to the challenging regioselectivity. We use LaCl3·2LiCl to catalyze propargylation of Grignard reagents in the absence of ligand in high regioselectivity and stereospecificity. The approach shows a wide substrate scope using alkyl or (hetero)aryl Grignard reagents and alkynyl electrophiles with different leaving groups. Our protocol was further applied for the formal synthesis of frondosin B. It is worth exploring methodologies utilizing the naturally abundant and relatively nontoxic lanthanum catalysts.

19.
Inorg Chem ; 62(39): 16077-16083, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37733482

RESUMEN

Ligands are known to play a crucial role in the construction of complexes with metal-metal bonds. Compared with metal-metal bonds involving d-block transition metals, knowledge of the metal-metal bonds involving f-block rare-earth metals still lags far behind. Herein, we report a series of complexes with cerium-transition-metal bonds, which are supported by two kinds of nitrogen-phosphorus ligands N[CH2CH2NHPiPr2]3 (VI) and PyNHCH2PPh2 (VII). The reactions of zerovalent group 10 metal precursors, Pd(PPh3)4 and Pt(PPh3)4, with the cerium complex supported by VI generate heterometallic clusters [N{CH2CH2NPiPr2}3Ce(µ-M)]2 (M = Pd, 2 and M = Pt, 3) featuring four Ce-M bonds; meanwhile, the bimetallic species [(PyNCH2PPh2)3Ce-M] (M = Ni, 5; M = Pd, 6; and M = Pt, 7) with a single Ce-M bond were isolated from the reactions of the cerium precursor 4 supported by VII with Ni(COD)2, Pd(PPh3)4, or Pt(PPh3)4, respectively. These complexes represent the first example of species with an RE-M bond between Ce and group 10 metals, and 2 and 3 contain the largest number of RE-M donor/acceptor interactions ever to have been observed in a molecule.

20.
Dalton Trans ; 52(32): 11315-11324, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37530174

RESUMEN

The first examples of regioselective aryl ortho-C-H functionalization with diphenyldiazomethane for the construction of Caryl-Nhydrazinato bonds were accomplished via the activation of C-H bonds and the subsequent reaction of diphenyldiazomethane with the RE-Caryl bond. The reactions of rare-earth metal monoalkyl complexes LRE(CH2SiMe3)(THF)2 (L = 2,5-[(2-pyrrolyl)CPh2]2(N-Me-pyrrole)) supported by a neutral N-methylpyrrole anchored dipyrrolyl ligand with 2 equiv. of Ph2CN2 gave irreversibly unprecedented hydrazonato-functionalized imino rare-earth metal complexes LRE(Ph2CNNC6H4-(o-CNHPh) (RE = Y (2a), Lu (2a')) in good yields involving a rather complex process including the interaction of a diazo unit with a RE-Calkyl bond, a ß-H elimination, a N-N cleavage, 1,4-hydrogen transfer and the subsequent C-N coupling with another diphenyldiazomethane. More important is that regioselective aryl C-H bond functionalization with diphenyldiazomethane to construct the Caryl-Nhydrazinato bonds can be easily achieved by three-component reactions of rare-earth metal monoalkyl complexes, a wide range of substituted imines (including aldimines, ketimines or analogous 2-phenylpyridine) and diphenyldiazomethane, affording various hydrazonato-functionalized phenyl, thienyl imino or pyridyl rare-earth metal complexes 2b-2j at room temperature. A further study indicated that the substituents on the phenyl ring have a great effect on the reaction pathway and governed the Caryl-Nhydrazinato bond construction. Moreover, the experimental studies show that the formation of the Caryl-Nhydrazinato bonds is thermodynamically facile, which could be realized at room temperature easily.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...