Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(45): 28485-28495, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097666

RESUMEN

The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.


Asunto(s)
Anoctamina-1/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclasas/metabolismo , Bronquios/metabolismo , Calcio/metabolismo , Células Cultivadas , Humanos , Pulmón/metabolismo , Contracción Muscular/fisiología , Relajación Muscular , Miocitos del Músculo Liso/metabolismo , Receptores Odorantes/genética
2.
Am J Physiol Renal Physiol ; 317(1): F172-F186, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042061

RESUMEN

The kidney uses specialized G protein-coupled receptors, including olfactory receptors (ORs), to act as sensors of molecules and metabolites. In the present study, we cloned and studied seven renal ORs, which we previously found to be expressed in the murine renal cortex. As most ORs are orphan receptors, our goal was to identify ligands for these ORs in the hope that this will guide future research into their functional roles. We identified novel ligands for two ORs: Olfr558 and Olfr90. For Olfr558, we confirmed activation by previously reported ligands and identified 16 additional carboxylic acids that activated this OR. The strongest activation of Olfr558 was produced by butyric, cyclobutanecarboxylic, isovaleric, 2-methylvaleric, 3-methylvaleric, 4-methylvaleric, and valeric acids. The primary in vivo source of both butyric and isovaleric acids is gut microbial metabolism. We also identified 14 novel ligands that activated Olfr90, the strongest of which were 2-methyl-4-propyl-1,3-oxathiane, 1-octen-3-ol, 2-octanol, and 3-octanol. Interestingly, 8 of these 14 ligands are of fungal origin. We also investigated the tissue distribution of these receptors and found that they are each found in a subset of "nonsensory" tissues. Finally, we examined the putative human orthologs of Olfr558 and Olfr90 and found that the human ortholog of Olfr558 (OR51E1) has a similar ligand profile, indicating that the role of this OR is likely evolutionarily conserved. In summary, we examined seven novel renal ORs and identified new ligands for Olfr558 and Olfr90, which imply that both of these receptors serve to detect metabolites produced by microorganisms.


Asunto(s)
Corteza Renal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Animales , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Microbioma Gastrointestinal , Humanos , Corteza Renal/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Transporte de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Transducción de Señal , Distribución Tisular
3.
Am J Physiol Renal Physiol ; 315(5): F1187-F1190, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30066586

RESUMEN

The kidneys play a critical role in precisely regulating the composition of the plasma to maintain homeostasis. To achieve this, the kidneys must be able to accurately determine or "sense" the concentration of a wide variety of substances and to make adjustments accordingly. Kidneys face a key challenge in the arena of pH balance, as there is a particularly narrow range over which plasma pH varies in a healthy subject (7.35-7.45) and this pH must constantly be protected against a variety of onslaughts (changes in diet, activity, and even elevation). The proximal tubule, the first segment to come into contact with the forming urine, plays an important role in helping the kidneys to maintain pH homeostasis. Recent studies have identified a number of novel proximal tubule proteins and signaling pathways that work to sense changes in pH and subsequently modulate renal pH regulation. In this review, we will highlight the role of novel players in acid-base homeostasis in the proximal tubule.


Asunto(s)
Equilibrio Ácido-Base , Túbulos Renales Proximales/metabolismo , Eliminación Renal , Reabsorción Renal , Animales , Sangre/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Sensibles al Calcio/metabolismo
4.
FASEB J ; 32(4): 2046-2059, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29196502

RESUMEN

The investigation of orphan GPCRs (GPRs) has the potential to uncover novel insights into whole animal physiology. In this study, our goal was to determine the renal localization of Gprc5c, a receptor that we previously reported to be highly expressed in murine whole kidney, and to examine physiologic parameters in Gprc5c knockout (KO) mice to gain insight into function. Gprc5c localized to the apical membrane of renal proximal tubules (PTs) in mice, rats, and humans. With the comparison of Gprc5c wild-type (WT) and KO mice, we found that Gprc5c KO mice have altered acid-base homeostasis. Specifically, Gprc5c KO mice have lower blood pH and higher urine pH compared with WT mice, with a reduced level of titratable acids in their urine. In an in vitro GPCR internalization assay, we observed that Gprc5c internalization (an index of activation) was triggered by alkaline extracellular pH. Furthermore, with the use of an in vitro BCECF assay, we observed that Gprc5c increases Na+/H+ exchanger 3 (NHE3) activity at alkaline pH. We also find that the NHE3 activity is reduced in Gprc5c KO mice by 2 photon imaging in seminaphthorhodafluors (SNARF)-4F-loaded kidney sections. NHE3 is a primary contributor to apical transport of H+ in the renal PT. Together, these data imply that Gprc5c modulates the renal contribution to systemic pH homeostasis, at least in part, by taking part in the regulation of NHE3.-Rajkumar, P., Cha, B., Yin, J., Arend, L. J., Paunescu, T. G., Hirabayashi, Y., Donowitz, M., Pluznick, J. L. Identifying the localization and exploring a functional role for Gprc5c in the kidney.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácidos/sangre , Ácidos/orina , Álcalis/sangre , Álcalis/orina , Animales , Células HEK293 , Humanos , Túbulos Renales Proximales/fisiología , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Receptores Acoplados a Proteínas G/genética , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Equilibrio Hidroelectrolítico
5.
Sci Rep ; 6: 38231, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905542

RESUMEN

Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.


Asunto(s)
Asma/metabolismo , Bronquios/metabolismo , Mecanotransducción Celular , Miocitos del Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Asma/patología , Bronquios/patología , Humanos , Miocitos del Músculo Liso/patología
6.
PLoS One ; 9(10): e111053, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25340336

RESUMEN

Recent studies have highlighted the important roles that "sensory" receptors (olfactory receptors, taste receptors, and orphan "GPR" receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n = 76), olfactory receptor (n = 6), and taste receptor (n = 11) gene families. A variety of reverse transcriptase (RT)-PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs), and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.


Asunto(s)
Riñón/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neuronas Receptoras Olfatorias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Distribución Tisular
7.
J Exp Biol ; 213(Pt 24): 4240-8, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21113005

RESUMEN

Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision.


Asunto(s)
Braquiuros/genética , Visión de Colores/genética , Opsinas/genética , Secuencia de Aminoácidos , Comunicación Animal , Animales , Braquiuros/anatomía & histología , Braquiuros/fisiología , Color , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Opsinas/química , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Filogenia , Alineación de Secuencia
8.
J Biol Chem ; 283(6): 3497-3506, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18073213

RESUMEN

Stress responses in both plants and yeast utilize calcium-mediated signaling. A yeast strain, K616, which lacks Ca(2+) pumps, requires micromolar Ca(2+) for growth. In medium containing 100 microM Ca(2+), K616 can withstand osmotic stress (750 mM sorbitol) and ionic stress (300 mM KCl) but not hypersodic stress (300 mM NaCl). Heterologous expression of the endoplasmic reticulum-located Arabidopsis thaliana Ca(2+)-ATPase, ACA2, permits K616 to grow under NaCl stress even in Ca(2+)-depleted medium. All stresses tested generated transient elevation of cytosolic Ca(2+) in wild type yeast, K601, whereas NaCl alone induced prolonged elevation of cytosolic Ca(2+) in K616. Both the Ca(2+) transient and survival of cultures subjected to NaCl stress was similar for the ACA2 transformant and K601. However, whereas K601 maintained low cytosolic Na(+) predominantly by pumping it out across the plasma membrane, the transformant sequestered Na(+) in internal organelles. This sequestration requires the presence of an endomembrane Na(+)/H(+)-antiporter, NHX1, which does not play a significant role in salt tolerance of wild type yeast except at acidic pH. Transcript levels of the plasma membrane Na(+)-ATPase, ENA1, were strongly induced only in K601, whereas NHX1 was strongly induced in both K601 and the ACA2 transformant. The calmodulin kinase inhibitor KN62 significantly reduced the salt tolerance of the ACA2 transformant and the transcriptional induction of NHX1. Thus, the heterologous expression of a plant endomembrane Ca(2+) pump results in the rapid depletion of cytosolic Ca(2+) and the activation of an alternate mechanism for surviving saline stress.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , ATPasas Transportadoras de Calcio/química , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Aequorina/química , Proteínas de Arabidopsis/química , ATPasas Transportadoras de Calcio/fisiología , Membrana Celular/metabolismo , Citosol/metabolismo , Prueba de Complementación Genética , Homeostasis , Saccharomyces cerevisiae/metabolismo , Sales (Química)/farmacología , Transducción de Señal , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...