Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(39): 15906-11, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22984181

RESUMEN

Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antiterminators is negatively controlled by reversible phosphorylation catalyzed by the cognate EIIs in response to substrate availability and positively controlled by the PTS. For the Escherichia coli BglG antiterminator, two different mechanisms for activation by the PTS were proposed. According to the first model, BglG is activated by HPr-catalyzed phosphorylation at a site distinct from the EII-dependent phosphorylation site. According to the second model, BglG is not activated by phosphorylation, but solely through interaction with EI and HPr, which are localized at the cell pole. Subsequently BglG is released from the cell pole to the cytoplasm as an active dimer. Here we addressed this discrepancy and found that activation of BglG requires phosphorylatable HPr or the HPr homolog FruB in vivo. Further, we uniquely demonstrate that purified BglG protein becomes phosphorylated by FruB as well as by HPr in vitro. Histidine residue 208 in BglG is essential for this phosphorylation. These data suggest that BglG is in fact activated by phosphorylation and that there is no principal difference between the PTS-exerted mechanisms controlling the activities of BglG family proteins in Gram-positive and Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Multimerización de Proteína/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación/fisiología , Proteínas Quinasas , Proteínas de Unión al ARN/genética
2.
J Bacteriol ; 193(8): 2013-26, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21335451

RESUMEN

The bacterial sugar:phosphotransferase system (PTS) delivers phosphoryl groups via proteins EI and HPr to the EII sugar transporters. The antitermination protein LicT controls ß-glucoside utilization in Bacillus subtilis and belongs to a family of bacterial transcriptional regulators that are antagonistically controlled by PTS-catalyzed phosphorylations at two homologous PTS regulation domains (PRDs). LicT is inhibited by phosphorylation of PRD1, which is mediated by the ß-glucoside transporter EII(Bgl). Phosphorylation of PRD2 is catalyzed by HPr and stimulates LicT activity. Here, we report that LicT, when artificially expressed in the nonrelated bacterium Escherichia coli, is likewise phosphorylated at both PRDs, but the phosphoryl group donors differ. Surprisingly, E. coli HPr phosphorylates PRD1 rather than PRD2, while the stimulatory phosphorylation of PRD2 is carried out by the HPr homolog NPr. This demonstrates that subtle differences in the interaction surface of HPr can switch its affinities toward the PRDs. NPr transfers phosphoryl groups from EI(Ntr) to EIIA(Ntr). Together these proteins form the paralogous PTS(Ntr), which controls the activity of K(+) transporters in response to unknown signals. This is achieved by binding of dephosphorylated EIIA(Ntr) to other proteins. We generated LicT mutants that were controlled either negatively by HPr or positively by NPr and were suitable bio-bricks, in order to monitor or to couple gene expression to the phosphorylation states of these two proteins. With the aid of these tools, we identified the stringent starvation protein SspA as a regulator of EIIA(Ntr) phosphorylation, indicating that PTS(Ntr) represents a stress-related system in E. coli.


Asunto(s)
Bacillus subtilis/fisiología , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Fosfotransferasas/metabolismo , Transducción de Señal , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Técnicas de Transferencia de Gen , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Estrés Fisiológico , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
3.
Mol Microbiol ; 65(6): 1518-33, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17824929

RESUMEN

Amino sugars are essential precursor molecules for the biosynthesis of bacterial cell walls. Their synthesis pathway is initiated by glucosamine-6-phosphate (GlcN-6-P) synthase (GlmS) which catalyses the rate limiting reaction. We report here that expression of the Escherichia coli glmS gene is negatively feedback regulated by its product GlcN-6-P at the post-transcriptional level. Initially, we observed that mutants defective for yhbJ, a gene of the rpoN operon, overproduce GlmS. Concomitantly, a glmS mRNA accumulates that is derived from processing of the primary glmUS transcript at the glmU stop codon by RNase E. A transposon mutagenesis screen in the yhbJ mutant identified the small RNA GlmZ (formerly RyiA or SraJ) to be required for glmS mRNA accumulation. GlmZ, which is normally processed, accumulates in its full-length form in the yhbJ mutant. In the wild type, a decrease of the intracellular GlcN-6-P concentration induces accumulation of the glmS transcript in a GlmZ-dependent manner. Concomitantly, GlmZ accumulates in its unprocessed form. Hence, we conclude that the biological function of GlmZ is to positively control the glmS mRNA in response to GlcN-6-P concentrations and that YhbJ negatively regulates GlmZ. As in yhbJ mutants GlcN-6-P has no effect, YhbJ is essential for sensing this metabolite.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Retroalimentación Fisiológica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , ARN Nuclear Pequeño/metabolismo , Codón de Terminación/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Glucosa-6-Fosfato/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Modelos Biológicos , Mutación/genética , Operón/genética , ARN Polimerasa Sigma 54 , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Regulación hacia Arriba/genética , beta-Galactosidasa/metabolismo
4.
J Bacteriol ; 189(13): 4603-13, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17449611

RESUMEN

The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Western Blotting , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Manitol/metabolismo , Manosa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Sorbitol/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Nucleic Acids Res ; 33(8): 2504-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15867195

RESUMEN

The transient inactivation of gene regulatory proteins by their sequestration to the cytoplasmic membrane in response to cognate signals is an increasingly recognized mechanism of gene regulation in bacteria. It remained to be shown, however, whether tethering to the membrane per se could be responsible for inactivation, i.e. whether such relocation leads to a spatial separation from the chromosome that results in inactivity or whether other mechanisms are involved. We, therefore, investigated the activity of Lac repressor artificially attached to the Escherichia coli cytoplasmic membrane. We demonstrate that this chimeric protein perfectly represses transcription initiated at the tac operator-promoter present on a plasmid and even in the chromosome. Moreover, this repression is inducible as normal. The data suggest that proteins localized to the inner face of the cytoplasmic membrane in principle have unrestricted access to the chromosome. Thus sequestration to the membrane in terms of physical separation from the chromosome cannot account alone for the inactivation of regulatory proteins. Other mechanisms, like induction of a conformational change or masking of binding domains are required additionally.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Cromosomas Bacterianos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cinética , Represoras Lac , Proteínas de la Membrana/análisis , Regiones Operadoras Genéticas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transcripción Genética
6.
J Bacteriol ; 184(21): 5833-41, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374815

RESUMEN

IS150, a member of the widespread IS3 family, contains two consecutive out-of-phase open reading frames, orfA and orfB, that partially overlap. These open reading frames encode three proteins, InsA, InsB, and the InsAB protein, which is jointly encoded by both open reading frames by means of programmed translational frameshifting. We demonstrate that the InsAB protein represents the IS150 element's transposase. In vivo, the wild-type IS150 element generates circular excision products and linear IS150 molecules. Circular and linear species have previously been detected with mutant derivatives of other members of the IS3 family. Our finding supports the assumption that these products represent true transposition intermediates of members of this family. Analysis of the molecular nature of these two species suggested that the circular forms are precursors of the linear molecules. Elimination of InsA synthesis within the otherwise intact element led to accumulation of large amounts of the linear species, indicating that the primary role of InsA may be to prevent abortive production of the linear species and to couple generation of these species to productive insertion events.


Asunto(s)
Elementos Transponibles de ADN , ADN Bacteriano , ADN Circular , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas/genética , Proteínas Represoras/genética , Recombinación Genética
7.
BMC Plant Biol ; 2: 6, 2002 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-12123528

RESUMEN

BACKGROUND: The moss Physcomitrella patens is an attractive model system for plant biology and functional genome analysis. It shares many biological features with higher plants but has the unique advantage of an efficient homologous recombination system for its nuclear DNA. This allows precise genetic manipulations and targeted knockouts to study gene function, an approach that due to the very low frequency of targeted recombination events is not routinely possible in any higher plant. RESULTS: As an important prerequisite for a large-scale gene/function correlation study in this plant, we are establishing a collection of Physcomitrella patens transformants with insertion mutations in most expressed genes. A low-redundancy moss cDNA library was mutagenised in E. coli using a derivative of the transposon Tn1000. The resulting gene-disruption library was then used to transform Physcomitrella. Homologous recombination of the mutagenised cDNA with genomic coding sequences is expected to target insertion events preferentially to expressed genes. An immediate phenotypic analysis of transformants is made possible by the predominance of the haploid gametophytic state in the life cycle of the moss. Among the first 16,203 transformants analysed so far, we observed 2636 plants (= 16.2%) that differed from the wild-type in a variety of developmental, morphological and physiological characteristics. CONCLUSIONS: The high proportion of phenotypic deviations and the wide range of abnormalities observed among the transformants suggests that mutagenesis by gene-disruption library transformation is a useful strategy to establish a highly diverse population of Physcomitrella patens mutants for functional genome analysis.


Asunto(s)
Bryopsida/genética , Biblioteca de Genes , Bryopsida/crecimiento & desarrollo , Elementos Transponibles de ADN , ADN Complementario/genética , Genoma de Planta , Mutagénesis , Mutagénesis Insercional , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Recombinación Genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...