Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 2(1): 136, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36352249

RESUMEN

BACKGROUND: During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS: We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS: We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS: Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.


We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.

2.
PLoS Comput Biol ; 13(11): e1005834, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29155814

RESUMEN

The detailed knowledge of C. elegans connectome for 3 decades has not contributed dramatically to our understanding of worm's behavior. One of main reasons for this situation has been the lack of data on the type of synaptic signaling between particular neurons in the worm's connectome. The aim of this study was to determine synaptic polarities for each connection in a small pre-motor circuit controlling locomotion. Even in this compact network of just 7 neurons the space of all possible patterns of connection types (excitation vs. inhibition) is huge. To deal effectively with this combinatorial problem we devised a novel and relatively fast technique based on genetic algorithms and large-scale parallel computations, which we combined with detailed neurophysiological modeling of interneuron dynamics and compared the theory to the available behavioral data. As a result of these massive computations, we found that the optimal connectivity pattern that matches the best locomotory data is the one in which all interneuron connections are inhibitory, even those terminating on motor neurons. This finding is consistent with recent experimental data on cholinergic signaling in C. elegans, and it suggests that the system controlling locomotion is designed to save metabolic energy. Moreover, this result provides a solid basis for a more realistic modeling of neural control in these worms, and our novel powerful computational technique can in principle be applied (possibly with some modifications) to other small-scale functional circuits in C. elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , Conectoma , Metabolismo Energético , Locomoción/fisiología , Transducción de Señal , Sinapsis/fisiología , Animales , Caenorhabditis elegans/metabolismo , Biología Computacional , Interneuronas/fisiología , Modelos Biológicos
3.
Clin Neurophysiol ; 128(4): 667-680, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27836429

RESUMEN

OBJECTIVE: This exploratory study provided a proof of concept of a new procedure using multivariate electroencephalographic (EEG) topographic markers of cortical connectivity to discriminate normal elderly (Nold) and Alzheimer's disease (AD) individuals. METHOD: The new procedure was tested on an existing database formed by resting state eyes-closed EEG data (19 exploring electrodes of 10-20 system referenced to linked-ear reference electrodes) recorded in 42 AD patients with dementia (age: 65.9years±8.5 standard deviation, SD) and 42 Nold non-consanguineous caregivers (age: 70.6years±8.5 SD). In this procedure, spectral EEG coherence estimated reciprocal functional connectivity while non-normalized directed transfer function (NDTF) estimated effective connectivity. Principal component analysis and computation of Mahalanobis distance integrated and combined these EEG topographic markers of cortical connectivity. The area under receiver operating curve (AUC) indexed the classification accuracy. RESULTS: A good classification of Nold and AD individuals was obtained by combining the EEG markers derived from NDTF and coherence (AUC=86%, sensitivity=0.85, specificity=0.70). CONCLUSION: These encouraging results motivate a cross-validation study of the new procedure in age- and education-matched Nold, stable and progressing mild cognitive impairment individuals, and de novo AD patients with dementia. SIGNIFICANCE: If cross-validated, the new procedure will provide cheap, broadly available, repeatable over time, and entirely non-invasive EEG topographic markers reflecting abnormal cortical connectivity in AD patients diagnosed by direct or indirect measurement of cerebral amyloid ß and hyperphosphorylated tau peptides.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Conectoma , Electroencefalografía/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Front Comput Neurosci ; 7: 128, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24106473

RESUMEN

Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e., they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.

5.
Comput Biol Chem ; 33(4): 339-43, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19656728

RESUMEN

The spread efficiency of influenza virus is significantly affected by several environmental parameters. However, neither the underlying reasons, nor the exact character and magnitude of the phenomena involved are sufficiently well understood. Here we present a probabilistic approach to the virus transmission events. For a sample ensemble, we construct a model of the infectivity as a function of the ambient conditions, and we determine its parameter values on the basis of the available experimental data.


Asunto(s)
Humedad , Gripe Humana/transmisión , Modelos Biológicos , Modelos Estadísticos , Orthomyxoviridae/fisiología , Temperatura , Animales , Humanos , Gripe Humana/virología
6.
Comput Biol Chem ; 33(2): 176-80, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19266626

RESUMEN

The influence that atmospheric conditions might have on the efficiency of the spread of influenza virus is important for epidemiological and evolutionary research. However, it has not been satisfactorily recognized and quantified so far. Here we provide a statistical model of influenza transmission between individuals. It has been derived from the results of recent experiments, which involved infecting guinea pigs with influenza at various temperatures and relative air humidity levels. The wide range of transmission rates in those experiments reflects the ensemble-independent phenomena. The correlation between most of our simulations and the experimental results is satisfactory. For several different conditions, we obtained transmissibility values which seem to be sufficiently accurate to provide partial input for an intended large-scale epidemiological study in the near future.


Asunto(s)
Humedad , Gripe Humana/transmisión , Modelos Estadísticos , Orthomyxoviridae/fisiología , Temperatura , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Orthomyxoviridae/patogenicidad
7.
J Chem Phys ; 125(20): 204107, 2006 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17144690

RESUMEN

A symplectic multiple-time-step (MTS) algorithm has been developed for the united-residue (UNRES) force field. In this algorithm, the slow-varying forces (which contain most of the long-range interactions and are, therefore, expensive to compute) are integrated with a larger time step, termed the basic time step, and the fast-varying forces are integrated with a shorter time step, which is an integral fraction of the basic time step. Based on the split operator formalism, the equations of motion were derived. Separation of the fast- and slow-varying forces leads to stable molecular dynamics with longer time steps. The algorithms were tested with the Ala(10) polypeptide chain and two versions of the UNRES force field: the current one in which the energy components accounting for the energetics of side-chain rotamers (U(rot)) can lead to numerically unstable forces and a modified one in which the the present U(rot) was replaced by a numerically stable expression which, at present, is parametrized only for polyalanine chains. With the modified UNRES potential, stable trajectories were obtained even when extending the basic time step to 15 fs and, with the original UNRES potentials, the basic time step is 1 fs. An adaptive multiple-time-step (A-MTS) algorithm is proposed to handle instabilities in the forces; in this method, the number of substeps in the basic time step varies depending on the change of the magnitude of the acceleration. With this algorithm, the basic time step is 1 fs but the number of substeps and, consequently, the computational cost are reduced with respect to the MTS algorithm. The use of the UNRES mesoscopic energy function and the algorithms derived in this work enables one to increase the simulation time period by several orders of magnitude compared to conventional atomic-resolution molecular dynamics approaches and, consequently, such an approach appears applicable to simulating protein-folding pathways, protein functional dynamics in a real molecular environment, and dynamical molecular recognition processes.


Asunto(s)
Algoritmos , Transferencia de Energía , Modelos Químicos , Modelos Moleculares , Proteínas/química , Simulación por Computador , Cinética , Movimiento (Física) , Estrés Mecánico
8.
J Phys Chem B ; 109(28): 13785-97, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16852727

RESUMEN

The Lagrange formalism was implemented to derive the equations of motion for the physics-based united-residue (UNRES) force field developed in our laboratory. The C(alpha)...C(alpha) and C(alpha)...SC (SC denoting a side-chain center) virtual-bond vectors were chosen as variables. The velocity Verlet algorithm was adopted to integrate the equations of motion. Tests on the unblocked Ala(10) polypeptide showed that the algorithm is stable in short periods of time up to the time step of 1.467 fs; however, even with the shorter time step of 0.489 fs, some drift of the total energy occurs because of momentary jumps of the acceleration. These jumps are caused by numerical instability of the forces arising from the U(rot) component of UNRES that describes the energetics of side-chain-rotameric states. Test runs on the Gly(10) sequence (in which U(rot) is not present) and on the Ala(10) sequence with U(rot) replaced by a simple numerically stable harmonic potential confirmed this observation; oscillations of the total energy were observed only up to the time step of 7.335 fs, and some drift in the total energy or instability of the trajectories started to appear in long-time (2 ns and longer) trajectories only for the time step of 9.78 fs. These results demonstrate that the present U(rot) components (which are statistical potentials derived from the Protein Data Bank) must be replaced with more numerically stable functions; this work is under way in our laboratory. For the purpose of our present work, a nonsymplectic variable-time-step algorithm was introduced to reduce the energy drift for regular polypeptide sequences. The algorithm scales down the time step at a given point of a trajectory if the maximum change of acceleration exceeds a selected cutoff value. With this algorithm, the total energy is reasonably conserved up to a time step of 2.445 fs, as tested on the unblocked Ala(10) polypeptide. We also tried a symplectic multiple-time-step reversible RESPA algorithm and achieved satisfactory energy conservation for time steps up to 7.335 fs. However, at present, it appears that the reversible RESPA algorithm is several times more expensive than the variable-time-step algorithm because of the necessity to perform additional matrix multiplications. We also observed that, because Ala(10) folds and unfolds within picoseconds in the microcanonical mode, this suggests that the effective (event-based) time unit in UNRES dynamics is much larger than that of all-atom dynamics because of averaging over the fast-moving degrees of freedom in deriving the UNRES potential.


Asunto(s)
Química Física/métodos , Péptidos/química , Proteínas/química , Alanina/química , Algoritmos , Simulación por Computador , Bases de Datos de Proteínas , Cinética , Modelos Químicos , Modelos Estadísticos , Modelos Teóricos , Conformación Molecular , Movimiento (Física) , Termodinámica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...