Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762064

RESUMEN

The impact of space radiation and microgravity on DNA damage responses has been discussed controversially, largely due to the variety of model systems engaged. Here, we performed side-by-side analyses of human hematopoietic stem/progenitor cells (HSPC) and peripheral blood lymphocytes (PBL) cultivated in a 2D clinostat to simulate microgravity before, during and after photon and particle irradiation. We demonstrate that simulated microgravity (SMG) accelerates the early phase of non-homologous end joining (NHEJ)-mediated repair of simple, X-ray-induced DNA double-strand breaks (DSBs) in PBL, while repair kinetics in HSPC remained unaltered. Repair acceleration was lost with increasing LET of ion exposures, which increases the complexity of DSBs, precluding NHEJ and requiring end resection for successful repair. Such cell-type specific effect of SMG on DSB repair was dependent on the NF-кB pathway pre-activated in PBL but not HSPC. Already under unperturbed growth conditions HSPC and PBL suffered from SMG-induced replication stress associated with accumulation of single-stranded DNA and DSBs, respectively. We conclude that in PBL, SMG-induced DSBs promote repair of radiation-induced damage in an adaptive-like response. HSPC feature SMG-induced single-stranded DNA and FANCD2 foci, i.e., markers of persistent replication stress and senescence that may contribute to a premature decline of the immune system in space.


Asunto(s)
Reparación del ADN , Sistema Hematopoyético , Humanos , ADN de Cadena Simple , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Daño del ADN
2.
Cell Death Dis ; 12(10): 941, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645785

RESUMEN

The recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53ß, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53ß and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Replicación del ADN , Humanos , Células K562 , Mitomicina/farmacología , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Recombinación Genética/genética , Fracciones Subcelulares/metabolismo , Proteína p53 Supresora de Tumor/química , Ubiquitinación , ADN Polimerasa iota
3.
Aging (Albany NY) ; 13(17): 21066-21089, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34506302

RESUMEN

The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.


Asunto(s)
Envejecimiento/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Linfocitos/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Adulto Joven
4.
Mech Ageing Dev ; 196: 111494, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887280

RESUMEN

Mutations in DNA repair genes have been connected with familial prostate cancer and sensitivity to targeted drugs like PARP-inhibitors. Clinical use of this information is limited by the small fraction of prostate cancer risk gene carriers, variants of unknown pathogenicity and the focus on monogenic disease mechanisms. Functional assays capturing mono- and polygenic defects were shown to detect breast and ovarian cancer risk in blood-derived cells. Here, we comparatively analyzed lymphocytes from prostate cancer patients and controls applying a sensitive DNA double-strand break (DSB) repair assay and a flow cytometrybased assay measuring the activity of Poly(ADP-Ribose)-Polymerase, a target in treatment of metastatic prostate cancer. Contrary to breast and ovarian cancer patients, error-prone DNA double-strand break repair was not activated in prostate cancer patients. Yet, the activity of PARP discriminated between prostate cancer cases and controls. PARylation also correlated with the age of male probands, suggesting male-specific links between mutation-based and aging-associated DNA damage accumulation and PARP. Our work identifies prostate cancer-specific DNA repair phenotypes characterized by increased PARP activities and carboplatin-sensitivities, detected by functional testing of lymphocytes. This provides new insights for further investigation of PARP and carboplatin sensitivity as biomarkers in peripheral cells of men and prostate cancer patients.


Asunto(s)
Carboplatino/farmacología , Linfocitos/patología , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor/sangre , Activación Enzimática/genética , Pruebas Hematológicas/métodos , Humanos , Masculino , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Reparación del ADN por Recombinación/genética
5.
Sci Rep ; 8(1): 6071, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666389

RESUMEN

Failure to precisely repair DNA damage in self-renewing Hematopoietic Stem and early Progenitor Cells (HSPCs) can disrupt normal hematopoiesis and promote leukemogenesis. Although HSPCs are widely considered a target of ionizing radiation (IR)-induced hematopoietic injury, definitive data regarding cell death, DNA repair, and genomic stability in these rare quiescent cells are scarce. We found that irradiated HSPCs, but not lineage-committed progenitors (CPs), undergo rapid ATM-dependent apoptosis, which is suppressed upon interaction with bone-marrow stroma cells. Using DNA repair reporters to quantify mutagenic Non-Homologous End Joining (NHEJ) processes, we found that HSPCs exhibit reduced NHEJ activities in comparison with CPs. HSPC-stroma interactions did not affect the NHEJ capacity of HSPCs, emphasizing its cell autonomous regulation. We noted diminished expression of multiple double strand break (DSB) repair transcripts along with more persistent 53BP1 foci in irradiated HSPCs in comparison with CPs, which can account for low NHEJ activity and its distinct control in HSPCs. Finally, we documented clonal chromosomal aberrations in 10% of IR-surviving HSPCs. Taken together, our results revealed potential mechanisms contributing to the inherent susceptibility of human HSPC to the cytotoxic and mutagenic effects of DNA damage.


Asunto(s)
Apoptosis/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Células Cultivadas , Inestabilidad Genómica/efectos de la radiación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Cariotipo , Radiación Ionizante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...