Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Genome ; 15(1): e20170, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34845865

RESUMEN

Among the different challenges related to rice (Oryza sativa L.) cultivation, drought, bacterial leaf blight (BLB), and blast are the key stresses that significantly affect grain yield (GY) in rice. To ameliorate this issue, marker-assisted forward breeding (MAFB) coupled with a simultaneous crossing approach was used to combine three drought tolerant quantitative trait loci (QTL)-qDTY1.1 , qDTY3.1 , and qDTY12.1 -four BLB genes-Xa4, xa5, xa13, and Xa21-and one blast-resistance gene, Pi9, in the elite rice cultivar Lalat. The introgression lines (ILs) developed in the current study were phenotypically screened for drought, BLB, and blast resistance at the F7 -F8 generation. Under the reproductive stage (RS) drought stress, the yield advantage of ILs, with major-effect QTL (qDTY) over elite parent Lalat, ranges from 9 to 124% in DS2019 and from 7 to 175% in WS2019. The selected ILs were highly resistant to BLB, with lesion lengths ranging from 1.3 to 3.0 cm and blast scores ranging from 1 to 3. ILs that were tolerant to RS drought, resistant to BLB, and blast disease and had similar or higher yields than Lalat were analyzed for grain quality. Six ILs were found to have similar grain quality characteristics to Lalat including hulling, milling, head rice recovery (HRR), chalkiness, alkali spreading value (ASV), and amylose content (AC). This study showed that MAFB, together with simultaneous crossing, would be an effective strategy to rapidly combine multiple stresses in rice. The ILs developed in this study could help to ensure yield sustainability in rainfed environments or be used as genetic material in future breeding programs.


Asunto(s)
Oryza , Sequías , Grano Comestible/genética , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo
2.
Rice (N Y) ; 5(1): 31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27234249

RESUMEN

BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. RESULTS: ARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations. CONCLUSION: For highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...