Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropeptides ; 105: 102426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527407

RESUMEN

Galectins are a group of ß-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aß plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aß25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aß25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aß25-35 peptide (1 µg/µL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aß25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aß25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aß25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aß25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aß25-35 peptide.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Galectinas , Receptor 2 Celular del Virus de la Hepatitis A , Microglía , Regulación hacia Arriba , Animales , Masculino , Ratas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Galectinas/metabolismo , Galectinas/farmacología , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Fragmentos de Péptidos/farmacología , Ratas Wistar , Receptores de Superficie Celular , Regulación hacia Arriba/efectos de los fármacos
2.
J Invertebr Pathol ; 201: 108022, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37984608

RESUMEN

ß-glucans (ßGs) are carbohydrate polymers linked by ß-1,3, 1,4 or 1,6 bonds, they have been used to protect against potential pathogens and prevent lethal diseases. The immune system possesses several receptors that identify a wide range of structures and trigger cellular and humoral mechanisms. However, the mechanisms by which ßGs activate the immune system of invertebrate organisms have not been fully clarified. This review is focused on evaluating the effect of ßGs on innate immune system in invertebrates. ßGs stimulate different cellular and humoral mechanisms, such as phagocytosis, oxygen species production, extracellular trap formation, proPO system, and antimicrobial peptide synthesis, moreover, ßGs increase survival rate and decrease pathogen load in several species.


Asunto(s)
beta-Glucanos , Animales , beta-Glucanos/farmacología , Antioxidantes/farmacología , Invertebrados , Fagocitosis
3.
Neurosci Lett ; 795: 137030, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36572143

RESUMEN

Research on the memory impairment caused by the Amyloid-ß 25-35 (Aß25-35) peptide in animal models has provided an understanding of the causes that occurs in Alzheimer's disease. However, it is uncertain whether this cognitive impairment occurs due to disruption of information encoding and consolidation or impaired retrieval of stored memory. The aim of this study was to determine the effect of the Aß25-35 peptide on the morphology of dendritic spines and the changes in the expression of NR2B and PSD-95 in the hippocampus associated with learning and memory deficit. Vehicle or Aß25-35 peptide (0.1 µg/µL) was bilaterally administered into the CA1 subfield of the rat hippocampus, then tested for spatial learning and memory in the Morris Water Maze. On Day 39, the morphological changes in the CA1 of the hippocampus and dentate gyrus were examined via Golgi-Cox stain. It was observed that the Aß25-35 peptide administered in the CA1 region of the rat hippocampus induced changes to the morphology of dendritic spines and the expression of the NR2B subunit of the NMDA receptor co-localized with both the spatial memory and PSD-95 protein in the hippocampus of learning rats. We conclude that, in soluble form, the Aß25-35 peptide perturbs synaptic plasticity, specifically in the formation of new synapses, thus promoting the progression of memory impairment.


Asunto(s)
Enfermedad de Alzheimer , Espinas Dendríticas , Animales , Ratas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Memoria Espacial
4.
Glycoconj J ; 39(5): 685-699, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35653015

RESUMEN

Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize ß-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.


Asunto(s)
Enfermedades Neurodegenerativas , Astrocitos/metabolismo , Astrocitos/patología , Galectinas/metabolismo , Humanos , Microglía/metabolismo , Microglía/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias
5.
Clin Ophthalmol ; 15: 1365-1373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833495

RESUMEN

PURPOSE: In order to better understand cataract development, we analyzed the glycosylation profile of human lens epithelial cells (HLECs) from anterior lens capsules of type 2 diabetes mellitus (T2DM) and non-diabetic (ND) patients undergoing routine cataract surgery. SETTING: Research Department of the Asociación para Evitar la Ceguera, Hospital "Dr. Luis Sánchez Bulnes", Mexico. DESIGN: Experimental study. METHODS: Evaluation of anterior lens capsules from T2DM and ND patients undergoing phacoemulsification and free from other ocular diseases. RESULTS: Hematoxylin-eosin staining revealed HLECs alterations in T2DM samples. From lectins with different sugar specificities used, concanavalin A showed significant differences, labeling homogeneously both in the cytoplasm and in cell membranes in ND capsules, while in T2DM capsules, in addition to membrane and cytoplasm labeling, there were perinuclear vesicles with high concanavalin A labeling. Two-dimensional gel electrophoresis showed that T2DM patients have a ~65-kDa spot with an isoelectric point of 5.5 with a higher density compared to ND capsules, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed 62% homology with type-1 cytokeratin. Immunohistochemistry using anti-pan cytokeratin antibody revealed co-localization with concanavalin A, and a lectin blot revealed with concanavalin A showed a band of ~65 kDa, a molecular weight that corresponds to human type 1 cytokeratin. CONCLUSION: These results suggest that over-expression of N-glycosidically linked human type 1 cytokeratin may induce capsule disruption and affect selective permeability, allowing the entry of different molecules to the lens that facilitate cataract progression.

6.
Viral Immunol ; 34(3): 165-173, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605822

RESUMEN

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/fisiología , Glicosilación , Humanos , SARS-CoV-2/química , SARS-CoV-2/genética
7.
Expert Rev Neurother ; 20(5): 439-448, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32303136

RESUMEN

Introduction: Neuroinflammation has been proposed as a common factor and one of the main inducers of neuronal degeneration. Galectins are a group of ß-galactoside-binding lectins, that play an important role in the immune response, adhesion, proliferation, differentiation, migration and cell growth. Up to 15 members of the galectin's family have been identified; however, the expression of galectin-1 and galectin-3 has been considered a key factor in neuronal regeneration and modulation of the inflammatory response. Galectin-1 is necessary to stimulate the secretion of neurotrophic factors in astrocytes and promoting neuronal regeneration. In contrast, galectin-3 fosters the proliferation of microglial cells and modulates cellular apoptosis, therefore these proteins are considered a useful alternative for the treatment of degenerative diseases.Areas covered: This review describes the roles of galectin-1 and galectin-3 in the modulation of neuroinflammation and their potential as therapeutic targets in the treatment for neurodegenerative diseases.Expert opinion: Although data in the literature vary, the effects of galectin-1 and galectin-3 on the activation and modulation of astrocytes and microglia has been described. Due to its anti-inflammatory effects, galectin-1 is proposed as a molecule with therapeutic potential, whereas the inhibition of galectin-3 could contribute to reduce the neuroinflammatory response in neurodegenerative diseases.


Asunto(s)
Astrocitos/metabolismo , Galectina 1/metabolismo , Galectina 3/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Galectina 3/antagonistas & inhibidores , Humanos , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...