Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(4): 728-736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396258

RESUMEN

To make adaptive decisions, we build an internal model of the associative relationships in an environment and use it to make predictions and inferences about specific available outcomes. Detailed, identity-specific cue-reward memories are a core feature of such cognitive maps. Here we used fiber photometry, cell-type and pathway-specific optogenetic manipulation, Pavlovian cue-reward conditioning and decision-making tests in male and female rats, to reveal that ventral tegmental area dopamine (VTADA) projections to the basolateral amygdala (BLA) drive the encoding of identity-specific cue-reward memories. Dopamine is released in the BLA during cue-reward pairing; VTADA→BLA activity is necessary and sufficient to link the identifying features of a reward to a predictive cue but does not assign general incentive properties to the cue or mediate reinforcement. These data reveal a dopaminergic pathway for the learning that supports adaptive decision-making and help explain how VTADA neurons achieve their emerging multifaceted role in learning.


Asunto(s)
Complejo Nuclear Basolateral , Ratas , Masculino , Femenino , Animales , Complejo Nuclear Basolateral/fisiología , Dopamina , Aprendizaje/fisiología , Recompensa , Refuerzo en Psicología , Señales (Psicología)
2.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873076

RESUMEN

Chronic stress can change how we learn and, thus, how we make decisions by promoting the formation of inflexible, potentially maladaptive, habits. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted approach in male and female mice, we reveal a dual pathway, amygdala-striatal, neuronal circuit architecture by which a recent history of chronic stress shapes learning to disrupt flexible goal-directed behavior in favor of inflexible habits. Chronic stress inhibits activity of basolateral amygdala projections to the dorsomedial striatum to impede the action-outcome learning that supports flexible, goal-directed decisions. Stress also increases activity in direct central amygdala projections to the dorsomedial striatum to promote the formation of rigid, inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to promote premature habit formation. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and other psychiatric conditions.

3.
Neuropsychopharmacology ; 47(2): 477-487, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34417544

RESUMEN

Excessive grooming of Sapap3-KO mice has been used as a model of obsessive-compulsive disorder (OCD). Previous studies suggest that dysregulation of cortico-striatal circuits is critically important in the generation of compulsive behaviors, and it has been proposed that the alteration in the activity patterns of striatal circuitry underlies the excessive grooming observed in Sapap3-KO mice. To test this hypothesis, we used in-vivo calcium imaging of individual cells to record striatal activity in these animals and optogenetic inhibition to manipulate this activity. We identified striatal neurons that are modulated during grooming behavior and found that their proportion is significantly larger in Sapap3-KO mice compared to wild-type littermates. Inhibition of striatal cells in Sapap3-KO mice increased the number of grooming episodes observed. Remarkably, the specific inhibition of indirect pathway neurons decreased the occurrence of grooming events. Our results indicate that there is striatal neural activity related to excessive grooming engagement in Sapap3-KO mice. We also demonstrate, for the first time, that specific inhibition of striatal indirect pathway neurons reduces this compulsive phenotype, suggesting that treatments that alleviate compulsive symptoms in OCD patients may exert their effects through this specific striatal population.


Asunto(s)
Proteínas del Tejido Nervioso , Optogenética , Animales , Cuerpo Estriado/metabolismo , Aseo Animal/fisiología , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo
4.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34465613

RESUMEN

Striatal activity is necessary to initiate and execute sequences of actions. The main excitatory input to the striatum comes from the cortex. While it is hypothesized that motor and premotor cortico-striatal projections are important to guide striatal activity during the execution of sequences of actions, technical limitations have made this challenging to address. Here, we implemented a task in mice that allows for the study of different moments to execute a serial order sequence consisting of two subsequences of actions. Using this task, we performed electrophysiological recordings in the premotor (M2) and primary motor (M1) cortices, and state-dependent optogenetic inhibitions of their cortico-striatal projections. We show that while both M2 and M1 contain activity modulations related to the execution of self-paced sequences, mainly, the premotor cortico-striatal projections contribute to the proper execution/structuring of these sequences.


Asunto(s)
Cuerpo Estriado , Optogenética , Animales , Corteza Cerebral , Ratones , Neostriado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA