Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Appl Microbiol ; 45(3): 126317, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35339819

RESUMEN

Phaseolus vulgaris is a legume indigenous to America which is nodulated by strains of genus Rhizobium in Croatia. Four of these strains, 13TT, 9T, 18TT and 8Z are phylogenetically close to the species from the Rhizobium leguminosarum phylogenetic complex in the 16S rRNA gene analysis. The results of both the analyses of the concatenated recA and atpD genes and whole genomes revealed that the strains 13TT and 9T clustered with Rhizobium sophoriradicis CCBAU 03470T and the strains 18TT and 8Z with Rhizobium ecuadorense CNPSO 671T. Whole genome average nucleotide identity blast (ANIb) and dDDH values between the strains 13TT and the type strain of R. sophoriradicis and between the strains 18TT and the type strain of R. ecuadorense were lower than 95% and 70%, respectively, which are the threshold values recommended for bacterial species differentiation. These results combined with those of chemotaxonomic and phenotypic analyses support the affiliation of these strains to two novel species within the genus Rhizobium for which we propose the names Rhizobium croatiense sp. nov. 13TT (=LMG 32397T, = HAMBI 3740T) as type strain and Rhizobium redzepovicii sp. nov. 18TT (=LMG 32398T, = HAMBI 3741T) as type strain.


Asunto(s)
Phaseolus , Rhizobium , Croacia , ADN Bacteriano/genética , Ácidos Grasos , Hibridación de Ácido Nucleico , Phaseolus/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870578

RESUMEN

Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).


Asunto(s)
Agrobacterium , Phaseolus , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Agrobacterium/clasificación , Agrobacterium/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Phaseolus/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España
3.
Genes (Basel) ; 12(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477547

RESUMEN

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN
4.
Int J Syst Evol Microbiol ; 70(10): 5512-5519, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32910749

RESUMEN

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).


Asunto(s)
Agrobacterium/clasificación , Filogenia , Raíces de Plantas/microbiología , Zea mays/microbiología , Agrobacterium/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España
5.
Microorganisms ; 8(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580505

RESUMEN

In the present work, we analyse the genomic and phenotypic characteristics of a strain named RZME27T isolated from roots of a Zea mays plant grown in Spain. The phylogenetic analyses of 16S rRNA gene and whole genome sequences showed that the strain RZME27T clustered with the type strains of Neorhizobium galegae and Pseudorhizobium pelagicum from the family Rhizobiaceae. This family encompasses several genera establishing symbiosis with legumes, but the genes involved in nodulation and nitrogen fixation are absent in its genome. Nevertheless, genes related to plant colonization, such as those involved in motility, chemotaxis, quorum sensing, exopolysaccharide biosynthesis and hydrolytic enzymes production were found. The comparative pangenomic analyses showed that 78 protein clusters present in the strain RZME27T were not found in the type strains of its closest relatives N. galegae and P. pelagicum. The calculated average nucleotide identity (ANI) values between the strain RZME27T and the type strains of N. galegae and P. pelagicum were 75.61% and 75.1%, respectively, similar or lower than those found for other genera from family Rhizobiaceae. Several phenotypic differences were also found, highlighting the absence of the fatty acid C19:0 cyclo ω8c and propionate assimilation. These results support the definition of a novel genus and species named Endobacterium cerealis gen. nov. sp. nov. whose type strain is RZME27T.

6.
Syst Appl Microbiol ; 43(1): 126041, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31767155

RESUMEN

Leucaena leucocephala is a Mimosoid legume tree indigenous to America that has spread to other continents, although it is not still present in some European countries such as Portugal. Nevertheless, we found that this legume can be nodulated in this country by slow-growing rhizobial strains which were identified as Bradyrhizobium canariense trough the analysis of the core genes recA and glnII. The analysis of the symbiotic gene nodC showed that these strains belong to the symbiovar genistearum, which commonly nodulates Genistoid legumes. Although two strains nodulating L. leucocephala in China and Brazil were classified within the genus Bradyrhizobium, they belong to undescribed species and to the symbiovars glycinearum and tropici, respectively. Therefore, we report here for the first time the ability of L. leucocephala to establish symbiosis with strains of B. canariense sv genistearum confirming the high promiscuity of L. leucocephala, that allows it to establish symbiosis with rhizobia native to different continents increasing its invasiveness potential.


Asunto(s)
Bradyrhizobium/fisiología , Fabaceae , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/microbiología , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , Genes Bacterianos/genética , Genes Esenciales/genética , Filogenia , Portugal , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis
7.
Syst Appl Microbiol ; 42(6): 126019, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31635886

RESUMEN

Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.


Asunto(s)
Biodiversidad , Phaseolus/microbiología , Filogenia , Rhizobium/clasificación , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Croacia , ADN Bacteriano/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Rhizobium/química , Análisis de Secuencia de ADN , Microbiología del Suelo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Simbiosis/genética
8.
Sci Rep ; 9(1): 11033, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363104

RESUMEN

Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.


Asunto(s)
Fabaceae/metabolismo , Especies Introducidas , Fijación del Nitrógeno , Poaceae/fisiología , Suelo/química , Archaea/metabolismo , Bacterias/metabolismo , Fabaceae/microbiología , Fabaceae/fisiología , Nitrificación
9.
Int J Syst Evol Microbiol ; 69(10): 3141-3147, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31334698

RESUMEN

During a study on biodiversity of bacteria inhabiting rhizospheric soil of rockrose (Cistus ladanifer L.), we isolated a strain coded RD25T in a soil from Northern Spain. The 16S rRNA gene sequence showed 99.5 % identity with respect to the closest related species Pseudomonas brenneri DSM15294T, and 99.4 % with respect to P. paralactis WS4672T. The following related Pseudomonas species showed 99.3 % or less identity, and therefore RD25T was classified within genus Pseudomonas. The phylogenetic analysis of 16S rRNA and the housekeeping genes rpoB, rpoD and gyrB suggested that this strain could be a novel species. The strain RD25T has several polar-subpolar flagella. It can grow at 36 °C, at 0-6 % NaCl concentration and a range of pH 5-9. Positive for arginine dihydrolase and urease production, and negative for reduction of nitrate. The strain is catalase and oxidase positive. Major fatty acids are C16 : 1 ω7c / C16 : 1 ω6c in summed feature 3, C16 : 0, and C18 : 1 ω7c / C18 : 1 ω6c in summed feature 8. The respiratory ubiquinone is Q9. The DNA G+C content was 59.9 mol%. The digital DNA-DNA hybridisation average values (dDDH) ranged between 30-61.2 % relatedness and the ANIb values ranged between 93.9-80.5 % with respect to the type strains of the closely related species. Therefore, the genotypic, genomic, phenotypic and chemotaxonomic data support the classification of strain RD25 as a novel species of genus Pseudomonas, for which the name P. edaphica sp. nov. is proposed. The type strain is RD25T (=LMG 30152T=CECT 9373T).


Asunto(s)
Cistus/microbiología , Filogenia , Pseudomonas/clasificación , Rizosfera , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Ubiquinona/química
10.
Int J Syst Evol Microbiol ; 68(4): 1085-1089, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29458536

RESUMEN

A Gram-negative rod, designated strain LLAN61T, was isolated from a root nodule of Lotus lancerottensis growing in a saline soil sample from Lanzarote (Canary Islands). The strain grew optimally at 0.5 % (w/v) NaCl and tolerated up to 3.5 %. The 16S rRNA gene sequence analysis showed that strain LLAN61T belonged to genus Phyllobacterium and that Phyllobacteriumleguminum ORS 1419T and Phyllobacteriummyrsinacearum IAM 13584T are the closest related species with 97.93 and 97.86% similarity values, respectively. In the atpD phylogeny, P. leguminum ORS 1419T and P. myrsinacearum ATCC 43591T, sharing similarities of 87.6 and 85.8% respectively, were also the closest species to strain LLAN61T. DNA-DNA hybridization showed an average value of 21 % between strain LLAN61T and P. leguminum LMG 22833T, and 6 % with P. myrsinacearum ATCC 43590T. The predominant fatty acids were C19 : 0 cyclo ω8c and C18 : 1ω6c/C18 : 1ω7c (summed feature 8). The DNA G+C content was 58.0 mol%. Strain LLAN61T differed from its closest relatives in some culture conditions and in assimilation of several carbon sources. Based upon the results of phylogeny, DNA-DNA hybridization, phenotypic tests and fatty acid analysis, this strain should be classified as a novel species of Phyllobacterium for which the name Phyllobacterium salinisoli sp. nov. is proposed (type strain LLAN61T=LMG 30173T = CECT 9417T).


Asunto(s)
Lotus/microbiología , Phyllobacteriaceae/clasificación , Filogenia , Raíces de Plantas/microbiología , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Phyllobacteriaceae/genética , Phyllobacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN , España
11.
Infect Genet Evol ; 57: 106-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104095

RESUMEN

The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.


Asunto(s)
Técnicas de Tipificación Bacteriana , Infecciones por Pseudomonas/microbiología , Pseudomonas/clasificación , Animales , Genoma Bacteriano , Genómica/métodos , Humanos , Metabolómica/métodos , Filogenia , Proteómica/métodos , Pseudomonas/genética , Pseudomonas/metabolismo , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 67(6): 1789-1792, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28598309

RESUMEN

The species Arthrobacter viscosus was isolated from soil from Guatemala and it was classified into the genus Arthrobacter on the basis of phenotypic traits. Nevertheless, the results of16S rRNA gene analysis indicated that this species is a member of the genus Rhizobium, with Rhizobium alamii GBV016T and Rhizobium mesosinicum CCBAU 25010T as the most closely related species with 99.64 and 99.48 % similarity, respectively. The similarity values for the recA gene are 92.2 and 94.4 % with respect to R. alamii GBV016T and R. mesosinicum CCBAU 25010T, respectively, and those for the atpD gene are 92.9 and 98.7 %, respectively. Results of DNA-DNA hybridization analysis yield averages of 46 and 41 % relatedness with respect to the type strains of R. alamii and R. mesosinicum, respectively. Phenotypic characteristics also differed from those of the most closely related species of the genus Rhizobium. Therefore, based on the data obtained in this study, we propose to classify strain LMG 16473T as representing a novel species named Rhizobiumviscosum comb. nov. (type strain LMG 16473T=CECT 908T).


Asunto(s)
Arthrobacter/clasificación , Filogenia , Rhizobium/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genes Bacterianos , Guatemala , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN
13.
AIMS Microbiol ; 3(2): 267-278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31294160

RESUMEN

Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

14.
Int J Syst Evol Microbiol ; 67(4): 969-973, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27959779

RESUMEN

A bacterial strain designated GTAE24T was isolated from a root of wheat growing in soil from the Canary Islands, Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Brevundimonas with Brevundimonas abyssalisTAR-001T as its closest relative at 99.4 % similarity. DNA-DNA hybridization studies showed an average of 38 % relatedness between strain GTAE24T and the type strain of B. abyssalis. Cells were Gram-stain-negative and motile by polar flagella. The strain was positive for oxidase and weakly positive for catalase. Gelatin, starch and casein were not hydrolysed. Growth was supported by many carbohydrates and organic acids as carbon source. Ubiquinone Q-10 was the predominant isoprenoid quinone and C18 : 1ω7c/C18 : 1ω6c (summed feature 8) and C16 : 0 were the major fatty acids. The major polar lipids were phosphatidylglycerol, 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1,4)-α-d-glucopyranuronosyl] glycerol, 1,2-diacyl-3-O-[6'-phosphatidyl-α-d-glucopyranosyl] glycerol, 1,2-di-O-acyl-3-O-α-d-glucopyranosyl glycerol, and 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol. The DNA G+C content was 63.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain GTAE24T should be considered as representing a novel species of the genus Brevundimonas, for which the name Brevundimonas canariensis sp. nov. is proposed. The type strain is GTAE24T (=LMG 29500T=CECT 9126T).


Asunto(s)
Caulobacteraceae/clasificación , Filogenia , Raíces de Plantas/microbiología , Triticum/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Caulobacteraceae/genética , Caulobacteraceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Ubiquinona/química
15.
Sci Total Environ ; 577: 202-211, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27823824

RESUMEN

The Serra do Rola Moça State Park (PESRM) in Minas Gerais State, Brazil is a preserved site representative of the campo rupestre biome over an ironstone outcrop that has a high level of plant diversity. Almost 60% of this grassy field has been invaded by the exotic molasses grass (Melinis minutiflora), which constitutes a severe threat to the biodiversity and survival of this biome, particularly due to the impacts of annual fires and inappropriate restoration interventions. Many invasive species exhibit a high demand for nitrogen (N). Hence, this work aimed to study the N cycle alterations promoted by M. minutiflora in a site of the campo rupestre, where the leguminous species Mimosa pogocephala was prevalent. The biome's soils exhibited a high natural N fertility and low C:N ratio. The main N source in this biome resulted from the biological N fixation performed by M. pogocephala associated with Burkholderia nodosa, as evidenced by the total leaf N content, leaf δ15N signature, nodule occupation and bacterial molecular identification analyses. The displacement of native species by molasses grass was associated with changes in the soil N forms, namely the nitrate increased as the ammonium decreased. The latter was the dominant N form in the native species plots, as observed in the soil analysis of total N, ammonium and nitrate contents. The dominant ammonium form was changed to the nitric form by the stimulation of ammonia-oxidising bacteria populations due to the invasive species. Therefore, the key mechanism behind the invasiveness of the exotic grass and the concomitant displacement of the native species may be associated with changes in the soil N chemical species. Based on this finding and on the high N-based soil fertility found in the campo rupestre N fertilisation procedures for restoration of invaded areas should be strictly avoided in this biome.

16.
Int J Syst Evol Microbiol ; 66(12): 4936-4941, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27565417

RESUMEN

In this work we revise the taxonomic status of the Lotus-nodulating strains MAFF 303099T and R7A isolated in Japan and New Zealand, respectively. Their 16S rRNA gene sequences are identical and show 98.0, 99.7, 99.8 and 99.9 % similarity values with respect to Mesorhizobium loti NZP 2213T, M. jarvisii ATCC 33669T, M. huakuii USDA 4779T (=CCBAU 2609T) and M. erdmanii USDA 3471T, respectively. The analysis of recA and glnII gene sequeces showed that M. jarvisii ATCC 33669T and M. huakuii USDA 4779T (=CCBAU 2609T) are the most closely related strains to MAFF 303099T and R7A, with similarity values suggesting that these two strains belong to a different species for which MAFF 303099T is selected as the type strain. The DNA-DNA relatedness values between strain MAFF 303099T and its closest phylogenetic relatives ranged from 53 to 60 % in average. Strains MAFF 303099T and R7A presented slight differences in the proportions of C18 : 1ω7c 11-methyl and C19 : 0 cyclo ω8c fatty acids with respect to M. jarvisii ATCC 33669T and M. huakuii USDA 4779T, and also in several phenotypic characteristics. Therefore, we propose the reclassification of these two strains into a novel species named Mesorhizobium japonicum sp. nov., with the type strain being MAFF 303099T (=LMG 29417T=CECT 9101T).


Asunto(s)
Lotus/microbiología , Mesorhizobium/clasificación , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Japón , Mesorhizobium/genética , Nueva Zelanda , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
17.
Int J Syst Evol Microbiol ; 66(11): 4657-4664, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27503709

RESUMEN

A bacterial strain named IB1.1T was isolated in a screening of hydrocarbon-degrading bacteria from oil-contaminated soils on the territory of the Turukhansk District of Krasnoyarsk Krai, East Siberia, Russia. The 16S rRNA gene sequence had 98.7 % identity with respect to the closest phylogenetic relative, Pseudomonas granadensis F-278,770T, and the next most closely related species with 98.6 % similarity was Pseudomonaspunonensis, suggesting that IB1.1T should be classified within the genus Pseudomonas. The analysis of housekeeping genes rpoB, rpoD and gyrB showed similarities lower than 90 % in all cases with respect to the closest relatives, confirming its phylogenetic affiliation. The strain showed a polar flagellum. The respiratory quinone was Q9. The major fatty acids were 16 : 1ω7c/16 : 1ω6c (summed feature 3), 18 : 1ω7c and 16 : 0. The strain was oxidase- and catalase-positive, but the arginine dihydrolase system was not present. Nitrate reduction, urease and ß-galactosidase production, and aesculin hydrolysis were negative. The temperature range for growth was 4-34 °C, and the strain could grow at pH 11. The DNA G+C content was 58.5 mol%. DNA-DNA hybridization results showed values of less than 30 % relatedness with respect to the type strains of the eight most closely related species. Therefore, the dataset of genotypic, phenotypic and chemotaxonomic data support the classification of strain IB1.1T into a novel species of the genus Pseudomonas, for which the name Pseudomonasturukhanskensis sp. nov. is proposed. The type strain is IB1.1T (=VKM B-2935T=CECT 9091T).


Asunto(s)
Contaminación por Petróleo , Filogenia , Pseudomonas/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Siberia , Ubiquinona/química
18.
Syst Appl Microbiol ; 39(6): 378-83, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27394069

RESUMEN

In this work we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Venezuela from root nodules of Centrosema species. The analysis of the 16S rRNA gene showed that the strains belong to three clusters within genus Bradyrhizobium which have 100% similarity with Bradyrhizobium daqingense CCBAU 15774(T)Bradyrhizobium guangxiense CCBAU 53363(T) and Bradyrhizobium viridifuturi SEMIA 690(T). The results of recA and glnII gene analysis confirmed the identification of the strains CMVU02 and CMVU30 as Bradyrhizobium viridifuturi but the nodC gene analysis showed that they belong to a new symbiovar for which we propose the name tropici. Nevertheless, the concatenated recA and glnII gene phylogenetic analysis, DNA-DNA hybridization and phenotypic characterization showed that the strains A9(T), CMVU44(T) and CMVU04 belong to two novel Bradyrhizobium species. The analysis of the nodC gene showed that these strains also represent two new symbiovars. Based on these results we propose the classification of the strain A9(T) isolated from Centrosema molle into the novel species Bradyrhizobium centrosemae (sv. centrosemae) sp. nov. (type strain A9(T)=LMG 29515(T)=CECT 9095(T)). and the classification of the strains CMVU44(T) and CMVU04 isolated from C. macrocarpum into the novel species Bradyrhizobium americanum (sv. phaseolarum) sp. nov. (type strain CMVU44(T)=LMG 29514(T)=CECT 9096(T)).


Asunto(s)
Técnicas de Tipificación Bacteriana , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Secuencia de Bases , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , N-Acetilglucosaminiltransferasas/genética , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Análisis de Secuencia de ADN , Simbiosis , Venezuela
19.
Int J Syst Evol Microbiol ; 66(4): 1838-1843, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26843192

RESUMEN

A bacterial strain designated PM10T was isolated from root nodules of Periandra mediterranea in Brazil. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacillus with its closest relatives being Paenibacillus vulneris CCUG 53270T and Paenibacillus yunnanensis YN2T with 95.6 and 95.9% 16S rRNA gene sequence similarity, respectively. The isolate was a Gram-stain-variable, motile, sporulating rod that was catalase-negative and oxidase-positive. Caseinase was positive, amylase was weakly positive and gelatinase was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C15 : 0 was the major fatty acid. Major polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PM10T should be considered representative of a novel species of the genus Paenibacillus, for which the name Paenibacillus periandrae sp. nov. is proposed. The type strain is PM10T (=LMG 28691T=CECT 8827T).


Asunto(s)
Fabaceae/microbiología , Paenibacillus/clasificación , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Datos de Secuencia Molecular , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Syst Evol Microbiol ; 66(2): 975-981, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637820

RESUMEN

We analysed, using a polyphasic taxonomic approach, two bacterial strains coded BSTT30T and BSTT40, isolated in the course of a study of endophytic bacteria occurring in the stems and roots of potatoes growing in soil from Salamanca, Spain. The 16S rRNA gene sequence was identical in both strains and had 98.4 % identity with respect to the closest relatives Erwinia tasmaniensis Et1/99T and Erwinia rhapontici ATCC29283T. Erwinia billingiae E63T and Erwinia toletana A37T were also closely related with 98.2 % sequence similarities, so the novel strains were classified within the genus Erwinia. The analysis of the housekeeping genes gpd, gyrB and rpoD confirmed the phylogenetic affiliation of strains BSTT30T and BSTT40 with similarities of lower than 90 % in all cases with respect to the closest relatives mentioned above. The respiratory quinone of strain BSTT30T was Q8. The major fatty acids were C16 : 0, C16 : 1ω7c/16 : 1ω6c in summed feature 3 and C18 : 1ω7c/18 : 2ω6,9c in summed feature 8. The novel strains were oxidase-negative and catalase-positive. Glucose was fermented without gas production. They were negative for arginine dihydrolase, urease and indole production. The strains could grow at 35 °C and at pH 10. DNA G+C content was 50.1 mol%. DNA-DNA hybridization results showed values of lower than 29 % relatedness with respect to the type strains of the four most closely related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strains BSTT30T and BSTT40 into a novel species of the genus Erwinia, for which the name Erwinia endophytica sp. nov. is proposed. The type strain is BSTT30T ( = LMG 28457T, CECT 8692T).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA