Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222488

RESUMEN

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Asunto(s)
Somitos , Pez Cebra , Animales , Ratones , Somitos/metabolismo , Proteoglicanos/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Desarrollo de Músculos/fisiología
2.
Stem Cell Res Ther ; 14(1): 16, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737794

RESUMEN

BACKGROUND: Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. Specific and thorough identification of cancer cell subsets with higher tumorigenicity and chemoresistance, such as cancer stem cells (CSCs), could lead to the development of new and promising therapeutic targets. For better CSC identification, a complete or extended surface marker phenotype is needed to provide increased specificity for new cell targeting approaches. Our goal is to identify and characterize a putative extended phenotype for CSCs derived from patients with GC before treatment, as well as to evaluate its clinical value. In addition, we aim to ensure that cells with this phenotype have stemness and self-renewal capabilities. METHODS: This is a cohort study including 127 treatment-naïve patients with GC who attended the Instituto Nacional de Cancerología. Multiparametric flow cytometry analysis was performed to determine the extended phenotype of cells derived from gastric biopsies. The tumorigenic capability of cells identified in patients was assessed in a zebrafish model. RESULTS: CD24+CD44+CD54+EpCAM+ cells were present in all treatment-naïve patients included, with a median abundance of 1.16% (0.57-1.89%). The percentage of CD24+CD44+CD54+EpCAM+ cells was categorized as high or low using 1.19% as the cutoff for the CD24+CD44+CD54+EpCAM+ cell subset. Additionally, a higher TNM stage correlated with a higher percentage of CD24+CD44+CD54+EpCAM+ cells (Rho coefficient 0.369; p < 0.0001). We also demonstrated that a higher percentage of CD24+CD44+CD54+EpCAM+ cells was positively associated with metastasis. The metastatic potential of these cells was confirmed in a zebrafish model. Ultimately, under our conditions, we conclude that CD24+CD44+CD54+EpCAM+ cells are true gastric cancer stem cells (GCSCs). CONCLUSION: The CD24+CD44+CD54+EpCAM+ cells present in tissue samples from patients are true GCSCs. This extended phenotype results in better and more specific characterization of these highly tumorigenic cells. The relative quantification of CD24+CD44+CD54+EpCAM+ cells has potential clinical value, as these cells are associated with metastatic disease, making their presence an additional prognostic marker and possibly a target for the design of new antineoplastic treatments in the era of precision oncology. Overall, the extended CD24+CD44+CD54+EpCAM+ phenotype of GCSCs could support their isolation for the study of their stemness mechanisms, leading to the identification of better molecular targets for the development of both new therapeutic approaches such as oncoimmunotherapy and new diagnostic and clinical prognostic strategies for GC.


Asunto(s)
Neoplasias Gástricas , Pez Cebra , Animales , Biomarcadores de Tumor/metabolismo , Antígeno CD24/genética , Línea Celular Tumoral , Estudios de Cohortes , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/metabolismo , Medicina de Precisión , Neoplasias Gástricas/metabolismo , Pez Cebra/metabolismo , Molécula 1 de Adhesión Intercelular , Humanos
3.
Dev Dyn ; 251(1): 213-225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228380

RESUMEN

BACKGROUND: The Transforming Growth Factor ß (TGFß) family is a group of related proteins that signal through a type I and type II receptors. Betaglycan, also known as the type III receptor (Tgfbr3), is a coreceptor for various ligands of the TGFß family that participates in heart, liver and kidney development as revealed by the tgfbr3-null mouse, as well as in angiogenesis as revealed by Tgfbr3 downregulation in morphant zebrafish. RESULTS: Here, we present CRISPR/Cas9-derived zebrafish Tgfbr3-null mutants, which exhibited unaltered embryonic angiogenesis and developed into fertile adults. One reproducible phenotype displayed by these Tgfbr3-null mutants is delayed chordacentra mineralization, which nonetheless does not result in vertebral abnormalities in the adult fishes. We also report that the canonical TGFß signaling pathway is needed for proper chordacentra mineralization and that Tgfbr3 absence decreases this signal in the notochordal cells responsible for this process. CONCLUSION: Betaglycan's "ligand presentation" function contributes to the optimal TGFß signaling required for zebrafish chordacentra mineralization.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Pez Cebra , Animales , Ratones , Proteoglicanos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Phys Chem Chem Phys ; 21(28): 15779-15786, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31282523

RESUMEN

Small-molecule fluorescent probes having optimized optical properties, such as high photostability and brightness, local microenvironment sensitivity and specific subcellular localizations, are increasingly available. Although the basis for designing efficient fluorophores for bioimaging applications is well established, implementing an improvement in a given photophysical characteristic always tends to compromise another optical property. This problem has enormous consequences for in vivo imaging, where ensuring a specific localization and precise control of the probe response is challenging. Herein we discuss a fluorescent probe, CC334, as a case study of the chromenylium-cyanine family that commonly exhibits highly complex photophysical schemes and highly interfered bioanalytical responses. By an exhaustive and concise analysis of the CC334 optical responses including detailed spectroscopic calibrations, steady-state microenvironment effects, ultrafast photophysics analysis and computational studies, we elucidate a new strategy to apply the probe in the singlet oxygen reactive oxygen species (1O2-ROS) monitoring using in vitro and in vivo models. The probe provides a new avenue for designing fluorescent probes to understand the dynamic behavior of subcellular environments.


Asunto(s)
Benzopiranos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Cobalto/química , Ferrocianuros/química , Quinolinas/química , Especies Reactivas de Oxígeno/química , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...