Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 13(22): 1963-1986, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34581188

RESUMEN

Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Desarrollo de Medicamentos , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Tiazolidinedionas/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Humanos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Bioorg Chem ; 116: 105350, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34547645

RESUMEN

In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Tiazolidinedionas/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Iran J Pharm Res ; 20(4): 188-201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35194439

RESUMEN

Thiazolidinedione (TZD), being a privileged scaffold, has been known as a significant structural moiety of antidiabetic drugs. TZD has been known to improve glycaemic control in type 2 diabetes mellitus (T2DM) by increasing insulin sensitivity in the body. A novel series of 5-benzylidene 2,4-thiazolidinedione derivatives were designed, synthesized (V1-V28), and structurally confirmed by different spectroscopic techniques such as FTIR, 1H NMR, 13C NMR, and Mass spectrometry. Upon the safety assessment of the synthesized molecules in non-transformed hepatocytes by MTT reduction assay, these were found non-toxic. These derivatives were then further evaluated for their antihyperglycemic and antihyperlipidemic properties in a high-fat diet and low dose of streptozotocin-induced diabetic rats. Altogether, seven biochemical parameters were analyzed, namely blood glucose, triglycerides, cholesterol, creatinine, blood urea nitrogen, HDL-cholesterol, and glycosylated hemoglobin in serum by standard methods. Four synthetic molecules (V2, V4, V5, and V20) possessed significant hypoglycaemic and hypolipidemic activity as compared to the positive control pioglitazone. Moreover, the histopathological studies of the heart and liver revealed no significant toxicity. Two representative compounds V2 and V4, were evaluated for their PPARγ activation potential, demonstrating that they were partial PPARγ agonists, thus confirming our designing hypothesis. Based on the results obtained, we assume that these compounds have the potential to be developed as future antidiabetic agents.

4.
Bioorg Chem ; 107: 104527, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33317839

RESUMEN

In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.


Asunto(s)
Antineoplásicos/uso terapéutico , Hidantoínas/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirazoles/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Hidantoínas/síntesis química , Hidantoínas/metabolismo , Hidantoínas/farmacocinética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirazoles/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188457, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096154

RESUMEN

Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ensayos Clínicos como Asunto , Sinergismo Farmacológico , Glucólisis/efectos de los fármacos , Humanos , Estructura Molecular , Neoplasias/metabolismo
6.
Bioorg Med Chem Lett ; 30(23): 127561, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32961322

RESUMEN

Thiazolidinedione (TZD) has been an interesting scaffold due to its proven antidiabetic activity and encouraging findings in anticancer drug discovery. We synthesised benzylidene thiazolidinedione derivatives which exhibited excellent antiproliferative effects in chronic myeloid leukemic cells K562 and the most active compounds 3t and 3x had GI50 value of 0.9 and 0.23 µM respectively. Both the compound was found to arrest the growth of K562 cells in G0/G1 phase in a time and dose dependent manner. Further, western blot analysis revealed that 3t and 3x could also inhibit the expression of cell proliferation markers, PCNA and Cyclin D1 and compound 3x up-regulated apoptosis markers, cleaved PARP1 and activated caspase 3, which could be a possible mechanism for the excellent antiproliferative effects exhibited by these compounds. In vitro combination studies of 3t and 3x with Imatinib found to potentiate the antitumor effects of Imatinib. Further in vivo efficacy in K562 xenografts, of 3t and 3x alone and in combination with Imatinib was found to be promising and far better than control group and combination treatment was found to be more effective as compared to only Imatinib treated or test compound treated animals. Thus, our findings suggest that these compounds are promising antitumor agents and could help to enhance the anticancer effects of Imatinib and other tyrosine kinase inhibitors, when used in combination.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos de Bencilideno/uso terapéutico , Mesilato de Imatinib/uso terapéutico , Neoplasias/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Masculino , Ratones Desnudos , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Eur J Pharm Sci ; 154: 105512, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801003

RESUMEN

Cancer is a heterogeneous disease, and its treatment requires the identification of new ways to thwart tumor cells. Amongst such emerging targets are glucose transporters (GLUTs, SLC2 family), which are overexpressed by almost all types of cancer cells; their inhibition provides a strategy to disrupt tumor metabolism selectively, leading to antitumor effects. Here, novel thiazolidinedione (TZD) derivatives were designed, synthesized, characterized, and evaluated for their GLUT1, GLUT4, and GLUT5 inhibitory potential, followed by in-vitro cytotoxicity determination in leukemic cell lines. Compounds G5, G16, and G17 inhibited GLUT1, with IC50 values of 5.4 ± 1.3, 26.6 ± 1.8, and 12.6 ± 1.2 µM, respectively. G17 was specific for GLUT1, G16 inhibited GLUT4 (IC50 = 21.6 ± 4.5 µM) comparably but did not affect GLUT5. The most active compound, G5, inhibited all three GLUT types, with GLUT4 IC50 = 9.5 ± 2.8 µM, and GLUT5 IC50 = 34.5 ± 2.4 µM. Docking G5, G16, and G17 to the inward- and outward-facing structural models of GLUT1 predicted ligand binding affinities consistent with the kinetic inhibition data and implicated E380 and W388 of GLUT1 vs. their substitutions in GLUT5 (A388 and A396, respectively) in inhibitor preference for GLUT1. G5 inhibited the proliferation of leukemia CEM cells at low micromolar range (IC50 = 13.4 µM) while being safer for normal blood cells. Investigation of CEM cell cycle progression after treatment with G5 showed that cells accumulated in the G2/M phase. Flow cytometric apoptosis studies revealed that compound G5 induced both early and late-stage apoptosis in CEM cells.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Tiazolidinedionas , Apoptosis , Línea Celular , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Hipoglucemiantes , Tiazolidinedionas/farmacología
8.
Eur J Med Chem ; 202: 112603, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32634629

RESUMEN

Cancer cells increase their glucose uptake and glycolytic activity to meet the high energy requirements of proliferation. Glucose transporters (GLUTs), which facilitate the transport of glucose and related hexoses across the cell membrane, play a vital role in tumor cell survival and are overexpressed in various cancers. GLUT1, the most overexpressed GLUT in many cancers, is emerging as a promising anti-cancer target. To develop GLUT1 inhibitors, we rationally designed, synthesized, structurally characterized, and biologically evaluated in-vitro and in-vivo a novel series of furyl-2-methylene thiazolidinediones (TZDs). Among 25 TZDs tested, F18 and F19 inhibited GLUT1 most potently (IC50 11.4 and 14.7 µM, respectively). F18 was equally selective for GLUT4 (IC50 6.8 µM), while F19 was specific for GLUT1 (IC50 152 µM in GLUT4). In-silico ligand docking studies showed that F18 interacted with conserved residues in GLUT1 and GLUT4, while F19 had slightly different interactions with the transporters. In in-vitro antiproliferative screening of leukemic/lymphoid cells, F18 was most lethal to CEM cells (CC50 of 1.7 µM). Flow cytometry analysis indicated that F18 arrested cell cycle growth in the subG0-G1 phase and lead to cell death due to necrosis and apoptosis. Western blot analysis exhibited alterations in cell signaling proteins, consistent with cell growth arrest and death. In-vivo xenograft study in a CEM model showed that F18 impaired tumor growth significantly.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Ratones , Ratones SCID , Modelos Moleculares , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
9.
Bioorg Chem ; 100: 103934, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32446120

RESUMEN

Epigenetics plays a fundamental role in cancer progression, and developing agents that regulate epigenetics is crucial for cancer management. Among Class I and Class II HDACs, HDAC8 is one of the essential epigenetic players in cancer progression. Therefore, we designed, synthesized, purified, and structurally characterized novel compounds containing N-substituted TZD (P1-P25). Cell viability assay of all compounds on leukemic cell lines (CEM, K562, and KCL22) showed the cytotoxic potential of P8, P9, P10, P12, P19, and P25. In-vitro screening of different HDACs isoforms revealed that P19 was the most potent and selective inhibitor for HDAC8 (IC50 - 9.3 µM). Thermal shift analysis (TSA) confirmed the binding of P19 to HDAC8. In-vitro screening of all compounds on the transport activity of GLUT1, GLUT4, and GLUT5 indicated that P19 inhibited GLUT1 (IC50 - 28.2 µM). P10 and P19 induced apoptotic cell death in CEM cells (55.19% and 60.97% respectively) and P19 was less cytotoxic on normal WBCs (CC50 - 104.2 µM) and human fibroblasts (HS27) (CC50 - 105.0 µM). Thus, among this novel series of TZD derivatives, compound P19 was most promising HDAC8 inhibitor and cytotoxic on leukemic cells. Thus, P19 could serve as a lead for further development of optimized molecules with enhanced selectivity and potency.


Asunto(s)
Inhibidores de Histona Desacetilasas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Tiazolidinedionas/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología
10.
Bioorg Chem ; 95: 103522, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31901516

RESUMEN

Histone deacetylases (HDACs) are being explored as a therapeutic target for interventions in different types of cancer. HDAC8 is a class I HDAC that is implicated as a therapeutic target in various indication areas, including different types of cancer and particularly childhood neuroblastoma. Most previously described HDAC8-selective inhibitors contain a hydroxamate function as zinc binding group (ZBG) to confer potency. However, hydroxamate class HDAC inhibitors have raised increasing concerns about their mutagenic character. Therefore, non-hydroxamate based inhibitors could prove to be safer than hydroxamates. In the present work, a series of novel 5-naphthylidene-2,4-thiazolidinedione was designed and evaluated as potential antiproliferative agents targeting selectively HDAC8 enzyme. Eleven novel derivatives were synthesized, purified and characterized by spectroscopic techniques. Compounds 3k and 3h was found to be most potent selective inhibitors of HDAC8 with IC50 values of 2.7 µM and 6.3 µM respectively. 3a to 3i was found to be most cytotoxic in leukemic cell lines. 3a and 3 h both were found to induce apoptosis and cause cell cycle arrest in G2/M phase.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Proteínas Represoras/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Histona Desacetilasas , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazolidinedionas/química
11.
Iran J Pharm Res ; 18(4): 1742-1758, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32184843

RESUMEN

Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease in the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase), one of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, novel derivatives of 1,2,4-triazole-5-thione rationally designed, synthesized and spectrally characterized as promising InhA inhibitors. Anti-mycobacterial potential was determined by resazurin microtiter assay using Mtb H37Rv strain. The mechanism of action of these compounds was confirmed by InhA enzyme inhibition studies. 6b, the most active compound of the series displayed MIC of 0.19 µM in resazurin microtiter assay and InhA inhibition with IC50 of 90 nM.

12.
Mini Rev Med Chem ; 19(4): 346-360, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29189151

RESUMEN

Thiazolidine-2,4-dione (TZD) is one of the most frequently encountered heterocyclic rings which has been implicated in design and synthesis of entities for various pathogenic conditions including cancer. Since its discovery various substitutions at 5th position have been carried out and reviewed. Various substitutions at 5th position have led to generation of glitazones, whose target peroxisome proliferating activated receptor γ (PPARγ) was found decade after their discovery. Acidic hydrogen (-NH) of TZD is a prime pharmacophoric requirement for the activation of PPARγ. However, advanced in-silico techniques have helped to design compounds bearing substitutions at both methylene and -NH group of TZD, targeting range of enzymes involved in various pathological conditions viz., diabetes, hyperlipidemia, infectious disease, inflammation and cancer. The promising activities shown by methylene and N-substituted TZDs in above mentioned therapeutic areas, prompted us to collate the information which would help researchers to alter the structure of existing ligands and to design new TZD derivatives with better safety and efficacy profiles.


Asunto(s)
Enfermedad , Descubrimiento de Drogas/métodos , Nitrógeno/química , Tiazolidinedionas/química , Tiazolidinedionas/farmacología , Animales , Humanos , Seguridad , Relación Estructura-Actividad , Tiazolidinedionas/efectos adversos
13.
Anticancer Agents Med Chem ; 18(11): 1551-1562, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29683096

RESUMEN

BACKGROUND: Cancer being a complex disease, single targeting agents remain unsuccessful. This calls for "multiple targeting", wherein a single drug is so designed that it will modulate the activity of multiple protein targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication, Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the present work, we have tried to develop dual inhibitors of Top2 and CK2. OBJECTIVE: With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve the anti-proliferative effects. METHODS: Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis. RESULTS: The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1 phase. CONCLUSION: We have successfully designed, synthesized, purified and structurally characterized 1- acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Quinasa de la Caseína II/antagonistas & inhibidores , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores Enzimáticos/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinasa de la Caseína II/metabolismo , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HL-60 , Humanos , Células K562 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
14.
Anticancer Agents Med Chem ; 17(4): 524-541, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27291250

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that regulates the expression of many genes relevant to carcinogenesis. By analogy to selective estrogen receptor modulator for treatment of cancer, selective or partial PPARγ agonists are considered clinically important for chemotherapy of cancer. OBJECTIVE: In this study we have rationally modified the structure of existing p-coumaric acid and ferulic acid, which would selectively activate PPARγ and exert their anti-proliferative effect at lower dose as compared to natural phytoconstituents. METHOD: A series of p-coumaric (3a-3y) and ferulic acid (4a-4y) derivatives were designed as docked and virtually studied for their molecular properties using suitable software. Synthesized derivatives were assessed to check their effect on non-transformed hepatocytes using MTT assay. The final products, 3a-3y and 4a-4y, substituted 4- hydroxycinnamic acid derivatives and ferulic acid derivatives respectively were synthesized by stirring compound 1a or 1b with compounds 2a-2y (molar ratio- 1:2) for 24 hours, in presence of K2CO3, using dimethyl formamide (DMF) as the solvent. Synthesized molecules were characterized by 1HNMR, 13C NMR, Mass and elemental analysis. Synthesized molecules were studied for their antiproliferative activity by SRB assay. Compounds were screened further evaluated for PPARγ activating assay, cell cycle analysis (propidium iodide) and westernblot analysis. RESULTS: Molecules 3c, 3m, 4c and 4m were found to have GI50 value less than 50µM. These molecules were found to block G0/G1 phase of cell cycle in dose dependent manner. Western blot analysis revealed that these molecules inhibit proliferating cell nuclear antigen (PCNA) and cyclin D1 expression. CONCLUSION: Collectively, these results suggest that these molecules could play a role as a novel therapeutic strategy for chronic myeloid leukemia.


Asunto(s)
Antineoplásicos/farmacología , Simulación por Computador , Ácidos Cumáricos/farmacología , Agonismo Parcial de Drogas , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , PPAR alfa/agonistas , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácidos Cumáricos/síntesis química , Ácidos Cumáricos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Estructura Molecular , Relación Estructura-Actividad
15.
Bioorg Chem ; 67: 139-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27388635

RESUMEN

A series of novel 5-benzylidene-2,4-thiazolidinediones were designed as inhibitors of angiogenesis targeting VEGFR-2. In docking study, molecules showed similar way of binding with VEGFR-2 as that of the co-crystallized ligand. Compounds were then synthesized, purified and characterized by spectroscopic techniques. Compounds 3f and 3i were found to be most active in the series showing good inhibition of angiogenesis in both CAM and in zebrafish embryo assays. Compound 3i also exhibited IC50 of 0.5µM against VEGFR-2.


Asunto(s)
Compuestos de Bencilideno/farmacología , Diseño de Fármacos , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Neovascularización Patológica/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
17.
J Cancer Res Ther ; 10(3): 701-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25313764

RESUMEN

BACKGROUND: Both chronic and acute inflammatory circuits are known to be associated with malignancy and drug resistance indicating that many antiinflammatory agents can potentially act as chemotherapeutic drugs. A series of new class of propanediones with good antiinflammatory activity were shown to possess moderate cytotoxic activities. AIM: The aim of the study was to evaluate this new series of 1-(2',4'-difluorophenyl)-3-(substituted phenyl)-1,3 propanediones (PR 1-7) for their caspase dependent apoptotic activity by using a reporter gene mediated caspase-3 sensor in chemo sensitive and paclitaxel resistant ovarian cancer cells. MATERIALS AND METHODS: A cellular model of paclitaxel resistance was developed in OAW42 cells stably expressing the caspase 3 sensor. The activity of caspase 3 after single and combinatorial drug treatments was determined using western blot and luciferase activity. Cell viability and cell cycle analysis were determined by MTT 3 (4,5- dimethyl thiazol-2 yl-2,5- diphenyl tetrazolium bromide (MTT) and Flow cytometric analysis (FACS) analysis. High Performance Liquid Chromatography (HPLC) analysis was performed to assess cellular uptake of the propanediones. RESULTS: Both nitro/methoxy (Group I) and halogen substituted propandiones at ortho, meta and para positions (Group II) showed a moderate increase in caspase-3 activity by 1.5- to 3.3-fold as compared with controls. However, no noticeable change in apoptotic cells percentage was observed. Increased intracellular uptake of Paclitaxel was observed during combinatorial treatment with one of the propanediones (PR2). Intriguingly, PR2 alone or in combination with Paclitaxel could induce a 2.5- to 2.9-fold increase in caspase-3 activity in Paclitaxel resistant cells. CONCLUSION: Our study reports a new class of propanediones that can augment the cytotoxic effect of Paclitaxel, and potentially can be used for treating Paclitaxel-resistant cancers.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 3/metabolismo , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasas/metabolismo
18.
Anticancer Agents Med Chem ; 14(6): 872-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875128

RESUMEN

Recent era aims at developing safer partial Peroxisome proliferator-activated receptor-γ (PPAR- γ) agonists in order to dodge the toxicity issues related to full agonists. With a view to develop non-thiazolidinediones as partial PPAR-γ agonists, novel analogues of oxazol-5-ones (3a-3q) were designed and virtually analyzed for their molecular and drug like properties. The newly synthesized compounds were further evaluated for their preliminary cytotoxicity in a panel of eight cancer cell lines using four concentrations at 10- fold dilutions. Sulforhodamine B (SRB) protein assay was used to estimate cell stability or growth. All the compounds demonstrated distinct effect in the extent of cytotoxicity in the breast cancer cell line MCF-7 with 3g specifically exhibiting partial PPAR-γ agonist activity and adipogenesis stimulating ability.


Asunto(s)
Acetanilidas/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Neoplasias/metabolismo , Neoplasias/patología , Oxazolidinonas/farmacología , PPAR gamma/agonistas , Acetanilidas/síntesis química , Acetanilidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Células KB , Células MCF-7 , Estructura Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/química , Relación Estructura-Actividad
19.
Expert Opin Investig Drugs ; 23(4): 501-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24597633

RESUMEN

INTRODUCTION: The thiazolidinedione (TZD) class of PPAR-γ ligands is predominantly known for its insulin sensitization activity. Unfortunately, these drugs have discernible side effects at diabetic dose. However, rosiglitazone and pioglitazone are still in the market with controversies. Past few years have noted the use of these drugs for the treatment of various other ailments. AREAS COVERED: In this review, the authors present the anticancer mechanisms of established TZDs and highlight some of the new-fangled agents discovered. Remarkable preclinical and clinical activity of the known and newly developed agents, alone or in combination with the known cytotoxic agents, offer a new perspective for clinical studies carving a niche in cancer chemotherapy. EXPERT OPINION: Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. The exploration of newer TZDs at different doses, as well as developing partial agonists, can potentially help in unveiling the underlying mechanisms of these therapeutics, and consequently, treat this dreadful group of diseases.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Animales , Antineoplásicos/farmacología , Humanos , Neoplasias/metabolismo , PPAR gamma/metabolismo , Tiazolidinedionas/farmacología
20.
Bioorg Med Chem ; 21(7): 1599-620, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23419324

RESUMEN

The promising activity shown by compounds containing thiazolidine-2,4-dione nucleus in numerous categories such as anti-hyperglycaemics, aldose reductase inhibitors, anti-cancer, anti-inflammatory, anti-arthritics, anti-microbials, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substituents on the thiazolidine-2,4-dione nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, peroxisome proliferator activated receptor γ (PPARγ) agonism and PPARγ-dependent and -independent anti-cancer activities are reviewed separately in literature. Short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing thiazolidine-2,4-dione nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of thiazolidine-2,4-dione nucleus in medicinal chemistry research. In the present review, various derivatives of thiazolidine-2,4-diones with different pharmacological activities are described on the basis of substitution pattern around the nucleus combined with the docking studies performed in the active site of the corresponding receptors with an aim to help medicinal chemists for developing an SAR on thiazolidine-2,4-dione derived compounds for each activity. This discussion will further help in the development of novel thiazolidine-2,4-dione compounds.


Asunto(s)
Diseño de Fármacos , Tiazolidinedionas/química , Tiazolidinedionas/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Infecciones Bacterianas/tratamiento farmacológico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Micosis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , PPAR gamma/agonistas , PPAR gamma/química , PPAR gamma/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA