Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 67(7): 1322-1331, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29625991

RESUMEN

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced ß-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a ß-cell senescence marker and effector) mRNA in rodent and human ß-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of ß-cells with acidic ß-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional ß-cells for replacement therapies in diabetes.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Senescencia Celular , Células Secretoras de Insulina/efectos de los fármacos , Triyodotironina/farmacología , Animales , Biomarcadores/análisis , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/fisiología , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
2.
Cell Metab ; 25(6): 1320-1333.e5, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591635

RESUMEN

Decreased growth hormone (GH) and thyroid hormone (TH) signaling are associated with longevity and metabolic fitness. The mechanisms underlying these benefits are poorly understood, but may overlap with those of dietary restriction (DR), which imparts similar benefits. Recently we discovered that hydrogen sulfide (H2S) is increased upon DR and plays an essential role in mediating DR benefits across evolutionary boundaries. Here we found increased hepatic H2S production in long-lived mouse strains of reduced GH and/or TH action, and in a cell-autonomous manner upon serum withdrawal in vitro. Negative regulation of hepatic H2S production by GH and TH was additive and occurred via distinct mechanisms, namely direct transcriptional repression of the H2S-producing enzyme cystathionine γ-lyase (CGL) by TH, and substrate-level control of H2S production by GH. Mice lacking CGL failed to downregulate systemic T4 metabolism and circulating IGF-1, revealing an essential role for H2S in the regulation of key longevity-associated hormones.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hígado/metabolismo , Animales , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Dextrotiroxina/metabolismo , Femenino , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Noqueados
3.
Endocrinology ; 157(9): 3647-57, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27387481

RESUMEN

Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRß1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRß1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development.


Asunto(s)
Encéfalo/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Triyodotironina/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Secuencia Conservada , ADN Metiltransferasa 3A , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Receptores de Hormona Tiroidea/metabolismo , Elementos de Respuesta , Activación Transcripcional
4.
J Clin Invest ; 124(5): 1976-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24713658

RESUMEN

Transcriptional coregulators are important components of nuclear receptor (NR) signaling machinery and provide additional mechanisms for modulation of NR activity. Expression of a mutated nuclear corepressor 1 (NCoR1) that lacks 2 NR interacting domains (NCoRΔID) in the liver leads to elevated expression of genes regulated by thyroid hormone receptor (TR) and liver X receptor (LXR), both of which control hepatic cholesterol metabolism. Here, we demonstrate that expression of NCoRΔID in mouse liver improves dietary cholesterol tolerance in an LXRα-independent manner. NCoRΔID-associated cholesterol tolerance was primarily due to diminished intestinal cholesterol absorption as the result of changes in the composition and hydrophobicity of the bile salt pool. Alterations of the bile salt pool were mediated by increased expression of genes encoding the bile acid metabolism enzymes CYP27A1 and CYP3A11 as well as canalicular bile salt pump ABCB11. We have determined that these genes are regulated by thyroid hormone and that TRß1 is recruited to their regulatory regions. Together, these data indicate that interactions between NCoR1 and TR control a specific pathway involved in regulation of cholesterol metabolism and clearance.


Asunto(s)
Colesterol/metabolismo , Hígado/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Receptores beta de Hormona Tiroidea/inmunología , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol/genética , Colesterol/farmacología , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Grasas de la Dieta/farmacología , Receptores X del Hígado , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Receptores beta de Hormona Tiroidea/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo
5.
Mol Cell Biol ; 34(9): 1564-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24550004

RESUMEN

Resistance to thyroid hormone (RTH), a human syndrome, is characterized by high thyroid hormone (TH) and thyroid-stimulating hormone (TSH) levels. Mice with mutations in the thyroid hormone receptor beta (TRß) gene that cannot bind steroid receptor coactivator 1 (SRC-1) and Src-1(-/-) mice both have phenotypes similar to that of RTH. Conversely, mice expressing a mutant nuclear corepressor 1 (Ncor1) allele that cannot interact with TRß, termed NCoRΔID, have low TH levels and normal TSH. We hypothesized that Src-1(-/-) mice have RTH due to unopposed corepressor action. To test this, we crossed NCoRΔID and Src-1(-/-) mice to create mice deficient for coregulator action in all cell types. Remarkably, NCoR(ΔID/ΔID) Src-1(-/-) mice have normal TH and TSH levels and are triiodothryonine (T(3)) sensitive at the level of the pituitary. Although absence of SRC-1 prevented T(3) activation of key hepatic gene targets, NCoR(ΔID/ΔID) Src-1(-/-) mice reacquired hepatic T(3) sensitivity. Using in vivo chromatin immunoprecipitation assays (ChIP) for the related coactivator SRC-2, we found enhanced SRC-2 recruitment to TR-binding regions of genes in NCoR(ΔID/ΔID) Src-1(-/-) mice, suggesting that SRC-2 is responsible for T(3) sensitivity in the absence of NCoR1 and SRC-1. Thus, T(3) targets require a critical balance between NCoR1 and SRC-1. Furthermore, replacement of NCoR1 with NCoRΔID corrects RTH in Src-1(-/-) mice through increased SRC-2 recruitment to T(3) target genes.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Transducción de Señal , Síndrome de Resistencia a Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Mutación , Coactivador 1 de Receptor Nuclear/genética , Hipófisis/metabolismo , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/sangre , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas/sangre , Tirotropina/sangre , Tirotropina/metabolismo , Triyodotironina/metabolismo
6.
J Biol Chem ; 289(3): 1313-28, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24288132

RESUMEN

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRß1. However, the number of known target genes directly regulated by TRß1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRß1 cistrome in vivo, we expressed a biotinylated TRß1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRß1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRß1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRß1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRß1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRß1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRß1 in vivo.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hígado/metabolismo , Elementos de Respuesta/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Transcripción Genética/fisiología , Triyodotironina/metabolismo , Animales , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Ratones Transgénicos , Receptores beta de Hormona Tiroidea/genética
7.
Mol Cell Endocrinol ; 365(1): 84-94, 2013 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-23000398

RESUMEN

Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Hormona Liberadora de Tirotropina/genética , Triyodotironina/metabolismo
8.
Cell Metab ; 14(6): 780-90, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22100407

RESUMEN

Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T(4) during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.


Asunto(s)
Ayuno/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Neuropéptido Y/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/fisiología , Hormonas Tiroideas/metabolismo , Absorciometría de Fotón , Análisis de Varianza , Animales , Composición Corporal , Femenino , Hibridación in Situ , Leptina/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Neuropéptido Y/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Melanocortina Tipo 4/genética , Hormona Liberadora de Tirotropina/metabolismo
9.
Mol Endocrinol ; 25(2): 212-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21239618

RESUMEN

The role of nuclear receptor corepressor (NCoR) in thyroid hormone (TH) action has been difficult to discern because global deletion of NCoR is embryonic lethal. To circumvent this, we developed mice that globally express a modified NCoR protein (NCoRΔID) that cannot be recruited to the thyroid hormone receptor (TR). These mice present with low serum T(4) and T(3) concentrations accompanied by normal TSH levels, suggesting central hypothyroidism. However, they grow normally and have increased energy expenditure and normal or elevated TR-target gene expression across multiple tissues, which is not consistent with hypothyroidism. Although these findings imply an increased peripheral sensitivity to TH, the hypothalamic-pituitary-thyroid axis is not more sensitive to acute changes in TH concentrations but appears to be reset to recognize the reduced TH levels as normal. Furthermore, the thyroid gland itself, although normal in size, has reduced levels of nonthyroglobulin-bound T(4) and T(3) and demonstrates decreased responsiveness to TSH. Thus, the TR-NCoR interaction controls systemic TH sensitivity as well as the set point at all levels of the hypothalamic-pituitary-thyroid axis. These findings suggest that NCoR levels could alter cell-specific TH action that would not be reflected by the serum TSH.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Western Blotting , Expresión Génica , Hipotiroidismo , Hibridación in Situ , Ratones , Proteínas Mutantes/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Reacción en Cadena de la Polimerasa , Receptores de Hormona Tiroidea/genética , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
10.
J Biol Chem ; 285(22): 16453-66, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20304921

RESUMEN

STEAP4 is a plasma membrane metalloreductase involved in the transport of iron and copper. Recently, STEAP4 was implicated in promoting insulin sensitivity by acting in white adipose tissue to control the production of inflammatory cytokines such as interleukin 6. Indeed, the loss of STEAP4 expression in mice leads to increased production of inflammatory cytokines in visceral white adipose tissue and systemic insulin resistance. In this study, we demonstrate that in mouse liver STEAP4 is produced at significant levels and that steap4 transcription is induced by interleukin 6. We further demonstrate that the steap4 gene is a direct target of phosphorylated STAT3 in mouse liver. In addition, hepatic STEAP4 expression is regulated by feeding and fasting, and obesity leads to the induction of STEAP4 expression in the liver. Interestingly, the regulation of STEAP4 in both feeding and fasting and the obese state appears to require the transcription factor CCAAT/enhancer-binding protein alpha that may act in concert with STAT3 as they both bind to the proximal steap4 promoter in vivo. Taken together, these data suggest the transcriptional regulation of hepatic STEAP4 may play a critical role in the response to nutritional and inflammatory stress and contributes to the protective effect of STEAP4 in vivo.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Inflamación , Resistencia a la Insulina , Interleucina-6/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación , Regiones Promotoras Genéticas
11.
Mol Endocrinol ; 23(6): 827-37, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19264844

RESUMEN

The regulation of expression of gluconeogenic genes including glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in the liver plays an important role in glucose homeostasis, because aberrant expression of these genes contributes to the development of type 2 diabetes. Previous reports demonstrate that signal transducer and activator of transcription 3 (STAT3) plays a key role in regulating gluconeogenic gene expression, but the mechanism remains unclear. Herein we demonstrate that phosphorylated STAT3 is required for repression of G6Pase expression by IL-6 in both HepG2 cells and mouse liver. Interestingly, PEPCK expression is regulated by STAT3 independent of IL-6 activation. Using in vivo chromatin immunoprecipitation, we demonstrate that STAT3 binds to the promoters of the G6Pase, PEPCK, and suppressor of cytokine signaling (SOCS)3 genes, and its recruitment increases at the G6Pase and SOCS3 promoters with IL-6 treatment. Whereas persistent recruitment of RNA polymerase II is seen on the SOCS3 promoter, consistent with its induction by IL-6, a decrease in polymerase II recruitment and histone H4 acetylation is seen at the G6Pase promoter with IL-6 treatment. Thus STAT3 mediates negative regulation of hepatic gluconeogenic gene expression in vivo by interacting with regulatory regions of these genes.


Asunto(s)
Gluconeogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factor de Transcripción STAT3/metabolismo , Acetilación/efectos de los fármacos , Animales , Colforsina/farmacología , Gluconeogénesis/efectos de los fármacos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Histonas/metabolismo , Humanos , Interleucina-6/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Modelos Genéticos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transcripción Genética/efectos de los fármacos
12.
Cancer Res ; 68(10): 3609-17, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18483242

RESUMEN

The pleiotropic cytokine interleukin 6 (IL-6) is involved in immune cell homeostasis. Additionally, IL-6 expression and signaling in tumor cells have been shown to elicit both protumor and antitumor properties. There is a plethora of mechanistic knowledge regarding how IL-6 signal transduction translates to biological responses. However, there is little understanding as to what factors control IL-6 expression within a tumor cell environment. The studies presented herein show that, in MCF-7 breast and ECC-1 endocervical cancer cells, the stimulation of aryl hydrocarbon receptor (AHR) activity, in combination with IL-1beta or phorbol 12-myristate 13-acetate (PMA) treatment, results in a marked synergistic induction of IL-6 levels over what is seen without AHR activation. Chromatin immunoprecipitation experiments suggest that the regulation of IL-6 mRNA expression occurs at the chromatin level, as AHR presence on the IL-6 promoter was observed in response to treatment with AHR ligand. Synergistic induction of IL-6 expression was sustained for 72 hours, with accumulation of IL-6 protein reaching levels 4.8-fold above IL-1beta treatment alone. In addition, transcriptional regulation of the prototypic AHR responsive gene Cyp1a1 was negatively regulated by PMA and IL-1beta treatment. Silencing of RELA expression alleviated IL-1beta-mediated repression of AHR transcriptional activity, whereas PMA-mediated repression was maintained. Additionally, small interfering RNA studies reveal that AHR and RELA are necessary for synergistic induction of IL-6. The findings presented here reveal the AHR as a potential therapeutic target for selective modulation of IL-6 expression in some tumor cell types. The data also suggest a possible previously unrecognized mechanism of AHR-mediated tumor promotion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Interleucina-6/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Silenciador del Gen , Humanos , Inflamación , Interleucina-1beta/metabolismo , Ligandos , Modelos Biológicos , ARN/metabolismo , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Transcripción Genética
13.
Arch Biochem Biophys ; 442(1): 59-71, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16137638

RESUMEN

The aryl hydrocarbon receptor (AhR) mediates the biological activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Whether the AhR can mediate enhanced transcriptional activity in the absence of ligand binding has not been established. Hepatocytes from AhR-null (AhR-KO) and wild-type (AhR-WT) neonatal mice were immortalized with Simian virus 40. Two point mutants of the AhR, A375I and A375F, were generated to test the hypothesis that the AhR requires ligand binding to exhibit significant transcriptional activity, both mutants fail to bind ligand or exhibit enhanced activity in cells exposed to AhR ligands. Upon transient, co-expression of ARNT with AhR-A375I or AhR-A375F in AhR-KO cells, these mutants exhibited significant ligand-independent transcriptional activity. However, in CV-1 cells, which others have previously shown to contain relatively high levels of AhR ligand(s), these AhR mutants exhibit essentially no constitutive activity. These results indicate that while the AhR can potentially exhibit activity in the absence of ligand binding, the high constitutive receptor activity observed in many cell lines appears to be due to the presence of endogenous AhR ligands.


Asunto(s)
Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Transcripción Genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Técnicas de Transferencia de Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Unión Proteica , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/fisiología , Virus 40 de los Simios/inmunología , Virus 40 de los Simios/patogenicidad
14.
Biochemistry ; 44(33): 11148-59, 2005 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16101299

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates transcription of a number of target genes upon binding ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Large intra- and interspecies variations exist with respect to sensitivity to TCDD, and this could, at least in part, be due to a considerable variation in the AhR amino acid sequence between species. The N-terminal half of the AhR is well-conserved across species, whereas the C-terminal half exhibits a considerable degree of degeneracy. It has previously been shown that there are differences between the mouse (mAhR) and human AhR (hAhR) in terms of cellular localization, nucleocytoplasmic shuttling, the effect of chaperone proteins on these properties, and differences in relative ligand affinity. In this study, two chimeras were generated such that each had the N-terminal half of one receptor and the C-terminal half of the other receptor. The C-terminal half of the receptor, containing the transactivation domain, determines the cellular localization of the transiently transfected receptor and regulates the ability of hepatitis B virus X-associated protein 2 (XAP2) to inhibit ligand-independent nuclear import of AhR. In addition, the transactivation domain (TAD) appears to determine the presence of XAP2 in the nuclear ligand-bound AhR/hsp90 complex prior to association with the AhR nuclear translocator protein (ARNT). However, the transactivation domain does not appear to play a role in determining relative ligand affinity of the receptor, and mAhR and hAhR have similar overall transactivation potential in a cell-based reporter system at a saturating dose of ligand. This study demonstrates for the first time that the transactivation domain of the AhR influences important biochemical properties of the N-terminal half of the AhR, and the degeneracy in the transactivation domain between the mAhR and the hAhR results in species-specific differences in receptor properties.


Asunto(s)
Proteínas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Ratones , Dibenzodioxinas Policloradas/farmacología , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética , Proteínas/genética , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Teratógenos/farmacología , Factores de Transcripción/metabolismo
15.
Expert Opin Drug Metab Toxicol ; 1(1): 9-21, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16922649

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that regulates the transcription of certain key enzymes involved in the metabolism of xenobiotic substances including some drugs. The AhR can be activated by a wide range of classes of compounds (e.g. polycyclic aromatic hydrocarbons, benzimidazoles and flavonoids), and interacts with a number of other proteins, including nuclear hormone receptors such as the oestrogen and androgen receptors. Activation of the AhR antagonises the oestrogen receptor and can lead to modulation of its transcriptional activity; thus, activating the AhR may serve as a target for breast cancer therapy. Disruption of normal signalling by drug interactions with the AhR or downstream components of this pathway could result in adverse effects, such as the bioactivation of procarcinogens or the disruption of normal homeostasis. The cytochrome P450s CYP1A1, -1B1, -1A2 and -2S1 are regulated by the AhR, and they are all involved in the metabolism of endogenous substrates as well as xenobiotics. Polymorphisms in the AhR, or polymorphisms in enzymes regulated by the AhR, may cause variations in response to certain drugs in different individuals; this needs to be taken into consideration when administering drugs that interact with this pathway.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Animales , Humanos , Preparaciones Farmacéuticas/química , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
16.
Mol Pharmacol ; 66(1): 129-36, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15213304

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-induced transcription factor that is activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other related compounds, leading to toxicity. There is considerable variation in the response to TCDD among different species, and this may be correlated to differences in the AhR. Variations in the structure of the AhR could result in altered biochemical properties of the receptor, such as ligand affinity or transactivation potential. The difference between the mouse AhR b-1 allele (mAhR(b-1)) and human AhR (hAhR), in terms of their relative affinity for a photoaffinity ligand (2-azido-3-[(125)I]iodo-7,8-dibromodibenzo-p-dioxin), was assessed using both in vitro assays and assays performed directly in cell culture. Results revealed that the hAhR has a lower affinity for the photoaffinity ligand compared with mAhR(b-1). In contrast with a previous study, we found that a single amino acid (valine 381) in hAhR is responsible for the lower ligand affinity, and mutating this residue to alanine results in restoration of high ligand affinity in hAhR. In vitro ligand binding assays are limited by the low concentrations of protein in the assays, and it is not appropriate to compare ligand affinities of different receptors using this method without performing a competition assay or increasing the protein concentration in the assay. Because of the limitation of the in vitro assay, the relative ligand occupancy of mAhR(b-1) and hAhR was compared most effectively within cells, revealing that mAhR(b-1) has a 10-fold higher relative ligand affinity in cells, whereas mAhR(d) has a 2-fold higher relative ligand affinity than hAhR.


Asunto(s)
Dioxinas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Alanina/genética , Animales , Unión Competitiva , Células COS , Células Cultivadas , Humanos , Radioisótopos de Yodo , Ratones , Dibenzodioxinas Policloradas/farmacología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Especificidad de la Especie , Valina/genética
17.
Biochemistry ; 43(3): 700-9, 2004 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-14730974

RESUMEN

The aryl hydrocarbon receptor (AhR) mediates the toxicologic and carcinogenic properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin. In the cytoplasm, the AhR is complexed with a dimer of hsp90, and the hepatitis B virus X-associated protein 2 (XAP2). Most studies that have examined the ability of XAP2 to modulate the AhR have characterized the mouse receptor (mAhR). However, the amino acid sequence of mAhR is significantly different from human AhR (hAhR) in the carboxy terminal half of the protein, and this could lead to differences in the behavior of the two receptors. mAhR-yellow fluorescent protein (YFP) and hAhR-YFP were used to compare nucleocytoplasmic shuttling properties and the ability of XAP2 to modulate their activity. As reported previously, mAhR localized predominantly in the nucleus and was redistributed to the cytoplasm by coexpression of XAP2 in COS-1 cells. Leptomycin B treatment revealed that XAP2 blocked mAhR-YFP translocation to the nucleus in the absence of ligand. In contrast, hAhR-YFP localized predominantly in the cytoplasm, and coexpression of XAP2 did not affect this localization, and did not block nuclear accumulation in the presence of leptomycin B. An XAP2 fusion protein with a nuclear localization signal fused to the carboxy terminus (XAP2-NLS) was utilized to test whether this protein could drag the AhR into the nucleus. Coexpression of mAhR-YFP and XAP2-NLS caused cytoplasmic localization of the mAhR, while hAhR-YFP was partially localized in the nucleus, suggesting that XAP2 remains bound to the hAhR during nucleocytoplasmic shuttling. The presence of XAP2 in the ligand-bound hAhR complex enhanced the rate of nuclear translocation but repressed transcriptional activity. Together, these results suggest that the hAhR differs biochemically from the mAhR.


Asunto(s)
Virus de la Hepatitis B/fisiología , Proteínas/química , Proteínas/fisiología , Receptores de Hidrocarburo de Aril/química , Transporte Activo de Núcleo Celular/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células COS , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Virus de la Hepatitis B/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Señales de Localización Nuclear/biosíntesis , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/fisiología , Pruebas de Precipitina , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Receptores de Hidrocarburo de Aril/biosíntesis , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Activación Transcripcional , Transfección , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/metabolismo
18.
J Biol Chem ; 278(4): 2677-85, 2003 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-12431985

RESUMEN

The mouse aryl hydrocarbon receptor (mAhR) is a ligand-activated transcription factor that exists in a tetrameric, core complex with a dimer of the 90-kDa heat shock protein, and the hepatitis B virus X-associated protein 2 (XAP2). Transiently expressed mAhR-YFP (yellow fluorescent protein fused with the mAhR) localizes throughout cells, with a majority occupying nuclei. Co-expression of XAP2 with mAhR-YFP results in a distinct redistribution to the cytoplasm. We have utilized several approaches to attempt to identify the mechanism by which XAP2 modulates the sub-cellular localization of the mAhR. The nuclear export inhibitor, leptomycin B, was used to demonstrate that XAP2 inhibits ligand-independent nucleocytoplasmic shuttling of the receptor. Results from cytoskeletal disruption and the addition of an alternate nuclear localization sequence (NLS) to mAhR-YFP suggest that XAP2 does not physically tether the complex in the cytoplasm. The use of a rabbit polyclonal antibody raised against a portion of the bipartite NLS of the mAhR revealed that XAP2 does not appear to block access to the NLS. However, XAP2 hinders importin beta binding to the mAhR complex, suggesting that XAP2 alters the conformation of the bipartite NLS of mAhR. XAP2 also represses the transactivation potential of the AhR, in contrast to previously published reports, perhaps by stabilizing the receptor complex and/or blocking nucleocytoplasmic shuttling of the AhR complex.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas/química , Transcripción Genética , beta Carioferinas/metabolismo , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células COS , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Eliminación de Gen , Vectores Genéticos , Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Ratones , Microscopía Fluorescente , Señales de Localización Nuclear , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/metabolismo , Transfección , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...