Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749544

RESUMEN

Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.


Asunto(s)
Señalización del Calcio , Calcio , Neuronas , Biosíntesis de Proteínas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Calcio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Humanos , Neuronas/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
2.
Mol Neurobiol ; 59(12): 7370-7392, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181660

RESUMEN

The Fragile-X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation of mRNAs essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs, aids in their microtubule-dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of FMRP's domains in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. We report that the C-terminus domain of FMRP is sufficient to bind to ribosomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated neuronal translation repression. However, dendritic distribution of FMRP and its microtubule association is favored by the synergistic combination of FMRP domains rather than individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome association. This is a fundamental mechanism governing the size and number of FMRP puncta that contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchical contribution of FMRP's domains in translation regulation.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microtúbulos/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Biosíntesis de Proteínas
3.
Sci Rep ; 12(1): 11317, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790863

RESUMEN

Epitranscriptome modifications are crucial in translation regulation and essential for maintaining cellular homeostasis. N6 methyladenosine (m6A) is one of the most abundant and well-conserved epitranscriptome modifications, which is known to play a pivotal role in diverse aspects of neuronal functions. However, the role of m6A modifications with respect to activity-mediated translation regulation and synaptic plasticity has not been studied. Here, we investigated the role of m6A modification in response to NMDAR stimulation. We have consistently observed that 5 min NMDAR stimulation causes an increase in eEF2 phosphorylation. Correspondingly, NMDAR stimulation caused a significant increase in the m6A signal at 5 min time point, correlating with the global translation inhibition. The NMDAR induced increase in the m6A signal is accompanied by the redistribution of the m6A marked RNAs from translating to the non-translating pool of ribosomes. The increased m6A levels are well correlated with the reduced FTO levels observed on NMDAR stimulation. Additionally, we show that inhibition of FTO prevents NMDAR mediated changes in m6A levels. Overall, our results establish RNA-based molecular readout which corelates with the NMDAR-dependent translation regulation which helps in understanding changes in protein synthesis.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Adenosina/metabolismo , Neuronas/metabolismo , Fosforilación , ARN/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Stem Cell Reports ; 16(11): 2736-2751, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678206

RESUMEN

Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.


Asunto(s)
Astrocitos/metabolismo , Autofagia/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Demencia Frontotemporal/genética , Predisposición Genética a la Enfermedad/genética , Mutación , Animales , Astrocitos/citología , Diferenciación Celular/genética , Células Cultivadas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Demencia Frontotemporal/metabolismo , Perfilación de la Expresión Génica/métodos , Glucólisis/genética , Homeostasis/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , RNA-Seq/métodos , Transducción de Señal/genética
5.
J Neurosci ; 41(42): 8686-8709, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34475200

RESUMEN

Apolipoprotein E (APOE), one of the primary lipoproteins in the brain has three isoforms in humans, APOE2, APOE3, and APOE4. APOE4 is the most well-established risk factor increasing the predisposition for Alzheimer's disease (AD). The presence of the APOE4 allele alone is shown to cause synaptic defects in neurons and recent studies have identified multiple pathways directly influenced by APOE4. However, the mechanisms underlying APOE4-induced synaptic dysfunction remain elusive. Here, we report that the acute exposure of primary cortical neurons or synaptoneurosomes to APOE4 leads to a significant decrease in global protein synthesis. Primary cortical neurons were derived from male and female embryos of Sprague Dawley (SD) rats or C57BL/6J mice. Synaptoneurosomes were prepared from P30 male SD rats. APOE4 treatment also abrogates the NMDA-mediated translation response indicating an alteration of synaptic signaling. Importantly, we demonstrate that both APOE3 and APOE4 generate a distinct translation response which is closely linked to their respective calcium signature. Acute exposure of neurons to APOE3 causes a short burst of calcium through NMDA receptors (NMDARs) leading to an initial decrease in protein synthesis which quickly recovers. Contrarily, APOE4 leads to a sustained increase in calcium levels by activating both NMDARs and L-type voltage-gated calcium channels (L-VGCCs), thereby causing sustained translation inhibition through eukaryotic translation elongation factor 2 (eEF2) phosphorylation, which in turn disrupts the NMDAR response. Thus, we show that APOE4 affects basal and activity-mediated protein synthesis responses in neurons by affecting calcium homeostasis.SIGNIFICANCE STATEMENT Defective protein synthesis has been shown as an early defect in familial Alzheimer's disease (AD). However, this has not been studied in the context of sporadic AD, which constitutes the majority of cases. In our study, we show that Apolipoprotein E4 (APOE4), the predominant risk factor for AD, inhibits global protein synthesis in neurons. APOE4 also affects NMDA activity-mediated protein synthesis response, thus inhibiting synaptic translation. We also show that the defective protein synthesis mediated by APOE4 is closely linked to the perturbation of calcium homeostasis caused by APOE4 in neurons. Thus, we propose the dysregulation of protein synthesis as one of the possible molecular mechanisms to explain APOE4-mediated synaptic and cognitive defects. Hence, the study not only suggests an explanation for the APOE4-mediated predisposition to AD, it also bridges the gap in understanding APOE4-mediated pathology.


Asunto(s)
Apolipoproteína E4/toxicidad , Señalización del Calcio/efectos de los fármacos , Homeostasis/efectos de los fármacos , Neuronas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Adolescente , Animales , Señalización del Calcio/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Homeostasis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética
7.
Mol Brain ; 12(1): 65, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291981

RESUMEN

Protein synthesis is crucial for maintaining synaptic plasticity and synaptic signalling. Here we have attempted to understand the role of RNA binding proteins, Fragile X Mental Retardation Protein (FMRP) and Moloney Leukemia Virus 10 (MOV10) protein in N-Methyl-D-Aspartate Receptor (NMDAR) mediated translation regulation. We show that FMRP is required for translation downstream of NMDAR stimulation and MOV10 is the key specificity factor in this process. In rat cortical synaptoneurosomes, MOV10 in association with FMRP and Argonaute 2 (AGO2) forms the inhibitory complex on a subset of NMDAR responsive mRNAs. On NMDAR stimulation, MOV10 dissociates from AGO2 and promotes the translation of its target mRNAs. FMRP is required to form MOV10-AGO2 inhibitory complex and to promote translation of MOV10 associated mRNAs. Phosphorylation of FMRP appears to be the potential switch for NMDAR mediated translation and in the absence of FMRP, the distinct translation response to NMDAR stimulation is lost. Thus, FMRP and MOV10 have an important regulatory role in NMDAR mediated translation at the synapse.


Asunto(s)
ADN Helicasas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Biosíntesis de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Proteínas Argonautas/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Fosforilación , Polirribosomas/metabolismo , Polirribosomas/ultraestructura , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Sinapsis/ultraestructura , Regulación hacia Arriba
8.
J Mol Biol ; 431(9): 1743-1762, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30738891

RESUMEN

MicroRNAs are small non-coding RNAs regulating mRNA translation. They play a crucial role in regulating homeostasis in neurons, especially in regulating local and stimulation dependent protein synthesis. Since activity-mediated protein synthesis in neurons is critical for memory and cognition, microRNAs have become key players in modulating these processes. Dementia is a broad term used for symptoms involving decline of memory and cognition. Several studies have implicated the dysregulation of microRNAs in many brain diseases like neurodegenerative diseases, neurodevelopmental disorders, brain injuries and dementia. In this review, we give an overview of microRNA-mediated regulation of proteins and cellular processes affected in dementia pathology, hence illustrating the importance of microRNAs in normal functioning. We also focus on a relatively less explored area in dementia pathology-the importance of activity-mediated protein synthesis at the synapse and the role of microRNAs in modulating this. Overall, this review will be helpful in looking at the significance of microRNAs in dementia from the perspective of defective regulation of protein synthesis and synaptic dysfunction.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Demencia/genética , MicroARNs/genética , Neuronas/metabolismo , Sinapsis/metabolismo , Proteínas tau/genética , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Autofagia/genética , Demencia/metabolismo , Demencia/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Mitofagia/genética , Neuronas/patología , Biosíntesis de Proteínas , Sinapsis/patología , Transmisión Sináptica , Proteínas tau/metabolismo
9.
Stem Cell Res ; 34: 101368, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30634129

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people worldwide. Mutations in the genes PSEN1, PSEN2 or APP are known to cause familial forms of AD with an early age of onset. In this study, specific pathogenic mutations in the APP gene were introduced into an iPSC line from a healthy individual by the use of CRISPR-Cas9. The study resulted in the generation of two new cell lines, one carrying the V717I APP mutation and one with the KM670/671NL APP mutation.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Adolescente , Secuencia de Bases , Línea Celular , Heterocigoto , Humanos , Masculino
10.
Stem Cell Res ; 34: 101349, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30660866

RESUMEN

Alzheimer's disease (AD) is the most frequent neurodegenerative disease amongst the elderly. The SNPs rs429358 and rs7412 in the APOE gene are the most common risk factor for sporadic AD, and there are three different alleles commonly referred to as APOE-ε2, APOE-ε3 and APOE-ε4. Induced pluripotent stem cells (iPSCs) hold great promise to model AD as such cells can be differentiated in vitro to the required cell type. Here we report the use of CRISPR/Cas9 technology employed on iPSCs from a healthy individual with an APOE-ε3/ε4 genotype to obtain isogenic APOE-ε2/ε2, APOE-ε3/ε3, APOE-ε4/ε4 lines as well as an APOE-knock-out line.


Asunto(s)
Apolipoproteínas E/genética , Técnicas de Cultivo de Célula/métodos , Edición Génica , Técnicas de Inactivación de Genes , Células Madre Pluripotentes Inducidas/citología , Mutación/genética , Adolescente , Línea Celular , Homocigoto , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA