Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 672: 797-804, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38870770

RESUMEN

HYPOTHESIS: The complexation of microgels with rigid nanoparticles is an effective way to impart novel properties and functions to the resulting hybrid particles for applications such as in optics, catalysis, or for the stabilization of foams/emulsions. The nanoparticles affect the conformation of the polymer network, both in bulk aqueous environments and when the microgels are adsorbed at a fluid interface, in a non-trivial manner by modulating the microgel size, stiffness and apparent contact angle. EXPERIMENTS: Here, we provide a detailed investigation, using light scattering, in-situ atomic force microscopy and nano-indentation experiments, of the interaction between poly(N-isopropylacrylamide) microgels and hydrophobized silica nanoparticles after mixing in aqueous suspension to shed light on the network reorganization upon nanoparticle incorporation. FINDINGS: The addition of nanoparticles decreases the microgels' bulk swelling and thermal response. When adsorbed at an oil-water interface, a higher ratio of nanoparticles influences the microgel's stiffness as well as their hydrophobic/hydrophilic character by increasing their effective contact angle, consequently modulating the monolayer response upon interfacial compression. Overall, these results provide fundamental understanding on the complex conformation of hybrid microgels in different environments and give inspiration to design new materials where the combination of a soft polymer network and nanoparticles might result in additional functionalities.

2.
J Colloid Interface Sci ; 672: 814-823, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38878623

RESUMEN

HYPOTHESIS: Particle surface chemistry and internal softness are two fundamental parameters in governing the mechanical properties of dense colloidal suspensions, dictating structure and flow, therefore of interest from materials fabrication to processing. EXPERIMENTS: Here, we modulate softness by tuning the crosslinker content of poly(N-isopropylacrylamide) microgels, and we adjust their surface properties by co-polymerization with polyethylene glycol chains, controlling adhesion, friction and fuzziness. We investigate the distinct effects of these parameters on the entire mechanical response from restructuring to complete fluidization of jammed samples at varying packing fractions under large-amplitude oscillatory shear experiments, and we complement rheological data with colloidal-probe atomic force microscopy to unravel variations in the particles' surface properties. FINDINGS: Our results indicate that surface properties play a fundamental role at smaller packings; decreasing adhesion and friction at contact causes the samples to yield and fluidify in a lower deformation range. Instead, increasing softness or fuzziness has a similar effect at ultra-high densities, making suspensions able to better adapt to the applied shear and reach complete fluidization over a larger deformation range. These findings shed new light on the single-particle parameters governing the mechanical response of dense suspensions subjected to deformation, offering synthetic approaches to design materials with tailored mechanical properties.

3.
J Am Chem Soc ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859572

RESUMEN

Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, i.e., the degree of heterogeneity in the length of side OEG segments. POEGMA brushes synthesized from discrete (macro)monomers obtained through chromatographic purification of commercial mixtures show increased hydration and reduced adhesion when compared to their structurally polydisperse analogues. The observed alteration of interfacial properties is directly linked to the presence of monodisperse OEG side chains, which hamper intramolecular and intermolecular hydrophobic interactions while simultaneously promoting the association of water molecules. These phenomena provide structurally homogeneous POEGMA brushes with a more lubricious and protein repellent character with respect to their heterogeneous counterparts. More generally, in contrast to what has been assumed until now, the properties of POEGMA brushes cannot be anticipated while ruling out the effect of dispersity by (macro)monomer feeds. Simultaneously, side chain dispersity of POEGMAs emerges as a critical parameter for determining the interfacial characteristics of brushes.

4.
Langmuir ; 40(13): 6750-6760, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38497776

RESUMEN

Colloidal probe microscopy, a technique whereby a microparticle is affixed at the end of an atomic force microscopy (AFM) cantilever, plays a pivotal role in enabling the measurement of friction at the nanoscale and is of high relevance for applications and fundamental studies alike. However, in conventional experiments, the probe particle is immobilized onto the cantilever, thereby restricting its relative motion against a countersurface to pure sliding. Nonetheless, under many conditions of interest, such as during the processing of particle-based materials, particles are free to roll and slide past each other, calling for the development of techniques capable of measuring rolling friction alongside sliding friction. Here, we present a new methodology to measure lateral forces during rolling contacts based on the adaptation of colloidal probe microscopy. Using two-photon polymerization direct laser writing, we microfabricate holders that can capture microparticles, but allow for their free rotation. Once attached to an AFM cantilever, upon lateral scanning, the holders enable both sliding and rolling contacts between the captured particles and the substrate, depending on the interactions, while simultaneously giving access to normal and lateral force signals. Crucially, by producing particles with optically heterogeneous surfaces, we can accurately detect the presence of rotation during scanning. After introducing the workflow for the fabrication and use of the probes, we provide details on their calibration, investigate the effect of the materials used to fabricate them, and report data on rolling friction as a function of the surface roughness of the probe particles. We firmly believe that our methodology opens up new avenues for the characterization of rolling contacts at the nanoscale, aimed, for instance, at engineering particle surface properties and characterizing functional coatings in terms of their rolling friction.

5.
Adv Sci (Weinh) ; 10(28): e2303404, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541434

RESUMEN

The encapsulation of a rigid core within a soft polymeric shell allows obtaining composite colloidal particles that retain functional properties, e.g., optical or mechanical. At the same time, it favors their adsorption at fluid interfaces with a tunable interaction potential to realize tailored two-dimensional (2D) materials. Although they have already been employed for 2D assembly, the conformation of single particles, which is essential to define the monolayer properties, has been largely inferred via indirect or ex situ techniques. Here, by means of in situ atomic force microscopy experiments, the authors uncover the interfacial morphology of hard-core soft-shell microgels, integrating the data with numerical simulations to elucidate the role of the core properties, of the shell thicknesses, and that of the grafting density. They identify that the hard core can influence the conformation of the polymer shells. In particular, for the case of small shell thickness, low grafting density, or poor core affinity for water, the core protrudes more into the organic phase, and the authors observe a decrease in-plane stretching of the network at the interface. By rationalizing their general wetting behavior, such composite particles can be designed to exhibit specific inter-particle interactions of importance both for the stabilization of interfaces and for the fabrication of 2D materials with tailored functional properties.

6.
J Colloid Interface Sci ; 650(Pt B): 1659-1670, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37494862

RESUMEN

Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Liposomas/química , Fricción , Sirolimus/farmacología , Fosfolípidos , Osteoartritis/tratamiento farmacológico , Lubrificación
7.
Sci Adv ; 8(45): eabq2019, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351021

RESUMEN

The reconfiguration of individual soft and deformable particles upon adsorption at a fluid interface underpins many aspects of their dynamics and interactions, ultimately regulating the properties of monolayers of relevance for applications. In this work, we demonstrate that atomic force microscopy can be used for the in situ reconstruction of the three-dimensional conformation of model poly(N-isopropylacrylamide) microgels adsorbed at an oil-water interface. We image the particle topography from both sides of the interface to characterize its in-plane deformation and to visualize the occurrence of asymmetric swelling in the two fluids. In addition, the technique enables investigating different fluid phases and particle architectures, as well as studying the effect of temperature variations on particle conformation in situ. We envisage that these results open up an exciting range of possibilities to provide microscopic insights into the single-particle behavior of soft objects at fluid interfaces and into the resulting macroscopic material properties.

8.
J Am Chem Soc ; 143(45): 19067-19077, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34738797

RESUMEN

Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.

9.
ACS Nano ; 15(12): 19256-19265, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34817171

RESUMEN

A tripod molecule incorporating a C60 photocatalyst into a rigid scaffold with disulfide legs was designed and synthesized for the stable and robust attachment of C60 onto an Au-coated atomic force microscope (AFM) tip. The "tripod-C60" was immobilized onto the tip by forming S-Au bonds in the desired orientation and a dispersed manner, rendering it suitable for the oxidation and scission of single molecules on a countersurface, thereby functioning as "molecular shears". A DNA origami with a well-defined structure was chosen as the substrate for the tip-induced oxidation. The gold-coated, C60-functionalized AFM tip was used for both AFM imaging and oxidation of DNA origami upon visible-light irradiation. The localized and temporally controlled oxidative damage of DNA origami was successfully performed at the single-molecule level via singlet-oxygen (1O2) generation from the immobilized C60 on the AFM tip. This oxidative damage to DNA origami can be carried out under ambient conditions in a fluid cell at room temperature, rendering it well-suited for the manipulation of a variety of species on surfaces via a spatially and temporally controlled oxidation reaction triggered by 1O2 locally generated from the immobilized C60 on the AFM tip.


Asunto(s)
ADN , Nanotecnología , Microscopía de Fuerza Atómica , Oxígeno , Especies Reactivas de Oxígeno
10.
ACS Nano ; 15(8): 13105-13117, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34328717

RESUMEN

Monolayers of soft colloidal particles confined at fluid interfaces are at the core of a broad range of technological processes, from the stabilization of responsive foams and emulsions to advanced lithographic techniques. However, establishing a fundamental relation between their internal architecture, which is controlled during synthesis, and their structural and mechanical properties upon interfacial confinement remains an elusive task. To address this open issue, which defines the monolayer's properties, we synthesize core-shell microgels, whose soft core can be chemically degraded in a controlled fashion. This strategy allows us to obtain a series of particles ranging from analogues of standard batch-synthesized microgels to completely hollow ones after total core removal. Combined experimental and numerical results show that our hollow particles have a thin and deformable shell, leading to a temperature-responsive collapse of the internal cavity and a complete flattening after adsorption at a fluid interface. Mechanical characterization shows that a critical degree of core removal is required to obtain soft disk-like particles at an oil-water interface, which present a distinct response to compression. At low packing fractions, the mechanical response of the monolayer is dominated by the outer polymer chains forming a corona surrounding the particles within the interfacial plane, regardless of the presence of a core. By contrast, at high compression, the absence of a core enables the particles to deform in the direction orthogonal to the interface and to be continuously compressed without altering the monolayer structure. These findings show how fine, single-particle architectural control during synthesis can be engineered to determine the interfacial behavior of microgels, enabling one to link particle conformation with the resulting material properties.

11.
ACS Appl Mater Interfaces ; 13(24): 29113-29121, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105349

RESUMEN

The efficient and bioorthogonal chemical ligation reaction between potassium acyltrifluoroborates (KATs) and hydroxylamines (HAs) was used for the surface functionalization of a self-assembled monolayer (SAM) with biomolecules. An alkane thioether molecule with one terminal KAT group (S-KAT) was synthesized and adsorbed onto a gold surface, placing a KAT group on the top of the monolayer (KAT-SAM). As an initial test case, an aqueous solution of a hydroxylamine (HA) derivative of poly(ethylene glycol) (PEG) (HA-PEG) was added to this KAT-SAM at room temperature to perform the surface KAT ligation. Quartz crystal microbalance with dissipation (QCM-D) monitoring confirmed the rapid attachment of the PEG moiety onto the SAM. By surface characterization methods such as contact angle and ellipsometry, the attachment of PEG layer was confirmed, and covalent amide-bond formation was established by X-ray photoelectron spectroscopy (XPS). In a proof-of-concept study, the applicability of this surface KAT ligation for the attachment of biomolecules to surfaces was tested using a model protein, green fluorescent protein (GFP). A GFP was chemically modified with an HA linker to synthesize HA-GFP and added to the KAT-SAM under aqueous dilute conditions. A rapid attachment of the GFP on the surface was observed in real time by QCM-D. Despite the fact that such biomolecules have a variety of unprotected functional groups within their structures, the surface KAT ligation proceeded rapidly in a chemoselective manner. Our results demonstrate the versatility of the KAT ligation for the covalent attachment of a variety of water-soluble molecules onto SAM surfaces under dilute and biocompatible conditions to form stable, natural amide bonds.


Asunto(s)
Boratos/química , Proteínas Fluorescentes Verdes/química , Proteínas Inmovilizadas/química , Membranas Artificiales , Hidroxilaminas/química , Polietilenglicoles/química , Prueba de Estudio Conceptual
12.
Nat Commun ; 12(1): 1477, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674607

RESUMEN

Dense suspensions of colloidal or granular particles can display pronounced non-Newtonian behaviour, such as discontinuous shear thickening and shear jamming. The essential contribution of particle surface roughness and adhesive forces confirms that stress-activated frictional contacts can play a key role in these phenomena. Here, by employing a system of microparticles coated by responsive polymers, we report experimental evidence that the relative contributions of friction, adhesion, and surface roughness can be tuned in situ as a function of temperature. Modifying temperature during shear therefore allows contact conditions to be regulated, and discontinuous shear thickening to be switched on and off on demand. The macroscopic rheological response follows the dictates of independent single-particle characterization of adhesive and tribological properties, obtained by colloidal-probe atomic force microscopy. Our findings identify additional routes for the design of smart non-Newtonian fluids and open a way to more directly connect experiments to computational models of sheared suspensions.

13.
ACS Macro Lett ; 10(1): 90-97, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35548981

RESUMEN

Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.


Asunto(s)
Polímeros , Concentración de Iones de Hidrógeno , Peso Molecular , Polielectrolitos
14.
Soft Matter ; 17(4): 1037-1047, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33289746

RESUMEN

Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field. Electrically induced attractive interactions were used to tune the load on the Janus colloid and thereby the friction with the underlying substrate, leading to control over the forward velocity of the particle. Our experimental data suggest that the frictional coupling required to achieve translation, transitions from a hydrodynamic regime to one of mixed contact coupling with increasing load force. Based on this insight, we show that our colloidal microrobots can probe the local friction coefficient of various solid surfaces, which makes them potentially useful as tribological microsensors. Lastly, we precisely manipulate porous cargos using our colloidal rollers, a feat that holds promise for bio-analytical applications.

15.
ACS Nano ; 14(10): 12708-12718, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32865993

RESUMEN

Linear and cyclic poly(2-ethyl-2-oxazoline) (PEOXA) adsorbates provide excellent colloidal stability to superparamagnetic iron oxide nanoparticles (FexOy NPs) within protein-rich media. However, dense shells of linear PEOXA brushes cannot prevent weak but significant attractive interactions with human serum albumin. In contrast, their cyclic PEOXA counterparts quantitatively hinder protein adsorption, as demonstrated by a combination of dynamic light scattering and isothermal titration calorimetry. The cyclic PEOXA brushes generate NP shells that are denser and more compact than their linear counterparts, entirely preventing the formation of a protein corona as well as aggregation, even when the lower critical solution temperature of PEOXA in a physiological buffer is reached.


Asunto(s)
Nanopartículas , Corona de Proteínas , Adsorción , Calorimetría , Humanos , Polímeros
16.
J Phys Chem Lett ; 11(18): 7819-7826, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32830976

RESUMEN

Light-induced oxidative damage of DNA by 1O2 generated from photoexcited C60 was observed at the single-molecule level by atomic force microscopy (AFM) imaging. Two types of DNA origami with uniform morphologies were immobilized on a mica surface and used as DNA substrates. Upon visible light irradiation (528 nm) in the presence of a C60 aqueous solution, the morphology changes of DNA origami substrates were observed by time-lapse AFM imaging at the single-molecule level by tracking a discrete DNA molecule. The origami showed nicked and flattened morphologies with relaxed features caused by the covalent cleavage of the DNA strands. The involvement of 1O2 in the on-surface DNA damage was clearly confirmed by AFM experiments in the presence of a 1O2 quencher and ESR measurements with a spin-trapping agent for 1O2. This study is the first example of single-molecule observation of oxidative damage of DNA by AFM with corresponding morphology changes in a photocontrolled and time-dependent manner by 1O2 generated catalytically from photoexcited C60.


Asunto(s)
Daño del ADN , ADN/química , Fulerenos/química , Microscopía de Fuerza Atómica , Procesos Fotoquímicos , Oxígeno Singlete/química , Adsorción , Silicatos de Aluminio/química , Luz , Estructura Molecular , Propiedades de Superficie
17.
ACS Nano ; 14(8): 10054-10067, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32628438

RESUMEN

The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.


Asunto(s)
Polímeros , Conformación Molecular , Peso Molecular , Unión Proteica , Propiedades de Superficie
18.
Nanoscale ; 12(4): 2292-2308, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31951242

RESUMEN

The understanding of friction in soft materials is of increasing importance due to the demands of industries such as healthcare, biomedical, food and personal care, the incorporation of soft materials into technology, and in the study of interacting biological interfaces. Many of these processes occur at the nanoscale, but even at micrometer length scales there are fundamental aspects of tribology that remain poorly understood. With the advent of Friction Force Microscopy (FFM), there have been many fundamental insights into tribological phenomena at the atomic scale, such as 'stick-slip' and 'super-lubricity'. This review examines the growing field of soft tribology, the experimental aspects of FFM and its underlying theory. Moving to the nanoscale changes the contact mechanics which govern adhesive forces, which in turn play a pivotal role in friction, along with the deformation of the soft interface and dissipative phenomena. We examine recent progress and future prospects in soft nanotribology.

19.
ACS Macro Lett ; 9(7): 1024-1033, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648599

RESUMEN

Polymer-topology effects can alter technologically relevant properties when cyclic macromolecules are applied within diverse materials formulations. These include coatings, polymer networks, or nanostructures for delivering therapeutics. While substituting linear building blocks with cyclic analogues in commonly studied materials is itself of fundamental interest, an even more fascinating observation has been that the introduction of physical or chemical boundaries (e.g., a grafting surface or cross-links) can amplify the topology-related effects observed when employing cyclic polymer-based precursors for assembling multidimensional objects. Hence, the application of cyclic polymers has enabled the fabrication of coatings with enhanced biorepellency and superior lubricity, broadened the tuning potential for mechanical properties of polymer networks, increased the thermodynamic stability, and altered the capability of loading and releasing drugs within polymeric micelles.

20.
Phys Rev Lett ; 123(11): 116102, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573261

RESUMEN

Studying the frictional properties of interfaces with dynamic chemical bonds advances understanding of the mechanism underlying rate and state laws, and offers new pathways for the rational control of frictional response. In this work, we revisit the load dependence of interfacial chemical-bond-induced (ICBI) friction experimentally and find that the velocity dependence of friction can be reversed by changing the normal load. We propose a theoretical model, whose analytical solution allows us to interpret the experimental data on timescales and length scales that are relevant to experimental conditions. Our work provides a promising avenue for exploring the dynamics of ICBI friction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...