Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(18): 5079-5082, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39270234

RESUMEN

Performing pattern recognition via correlation in the optical domain has potential advantages, including: (i) high-speed operation at the line rate and (ii) tunability and scalability by operating on the optical wave properties. Such pattern recognition might be performed on quadrature-phase-shift-keying (QPSK) data transmitted over an optical network, which generally requires using coherent detection to distinguish the phase levels of the correlator output. To enable simpler detection, we combine optical correlation with optical biasing to experimentally demonstrate tunable and scalable QPSK pattern recognition using direct detection. The pattern is applied by adjusting the relative phases of the local pumps. Delayed QPSK signals, a coherent bias tone, and local pumps undergo nonlinear wave-mixing in a periodically poled lithium niobate (PPLN) waveguide to perform optical correlation and biasing. The biased correlator output is captured using direct detection, where the highest power level corresponds only to the pattern. Multiple QPSK pattern recognitions are achieved error-free over 3072 symbols using power thresholding values of (i) 0.78 at a 5-Gbaud rate and 0.73 at a 10-Gbaud rate for 2-symbol pattern recognition and (ii) 0.81 at a 5-Gbaud rate and 0.79 at a 10-Gbaud rate for 3-symbol pattern recognition.

2.
Opt Lett ; 49(15): 4397-4400, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090943

RESUMEN

In this paper, we experimentally demonstrate an 8-Gbit/s quadrature-phase-shift-keying (QPSK) coherent underwater wireless optical communication (UWOC) link under scattering conditions at 532 nm. At the transmitter, we generate the 532-nm QPSK signal using second-harmonic generation (SHG), where the 1064-nm signal modulated with four phase levels of an 8-phase-shift-keying (8-PSK) format is phase doubled to produce the 532-nm QPSK signal. To enhance the receiver sensitivity, we utilize a local oscillator (LO) at the receiver from an independent laser source. The received QPSK data beam is mixed with the independent LO for coherent heterodyne detection. Results show that the bit error rates (BERs) of the received QPSK signal can reach below the 7% forward error correction (FEC) limit under turbid water with attenuation lengths (γL) up to 7.4 and 6.1 for 2- and 8-Gbit/s QPSK, respectively. The corresponding receiver sensitivities are -34.0 and -28.4 dBm for 2- and 8-Gbit/s QPSK, respectively.

3.
Opt Lett ; 49(17): 4899-4902, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207992

RESUMEN

Compared to its electronic counterpart, optically performed matrix convolution can accommodate phase-encoded data at high rates while avoiding optical-to-electronic-to-optical (OEO) conversions. We experimentally demonstrate a reconfigurable matrix convolution of quadrature phase-shift keying (QPSK)-encoded input data. The two-dimensional (2-D) input data is serialized, and its time-shifted replicas are generated. This 2-D data is convolved with a 1-D kernel with coefficients, which are applied by adjusting the relative phase and amplitude of the kernel pumps. Time-shifted data replicas (TSDRs) and kernel pumps are coherently mixed using nonlinear wave mixing in a periodically poled lithium niobate (PPLN) waveguide. To show the tunability and reconfigurability of this approach, we vary the kernel coefficients, kernel sizes (e.g., 2 × 1 or 3 × 1), and input data rates (e.g., 6-20 Gbit/s). The convolution results are verified to be error-free under an applied: (a) 2 × 1 kernel, resulting in a 16-quadrature amplitude modulation (QAM) output with an error vector magnitude (EVM) of ∼5.1-8.5%; and (b) 3 × 1 kernel, resulting in a 64-QAM output with an EVM of ∼4.9-5.5%.

4.
Opt Lett ; 48(17): 4617-4620, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656569

RESUMEN

Networks can play a key role in high-speed and reconfigurable arithmetic computing. However, two performance bottlenecks may arise when: (i) relying solely on electronics to handle computation for multiple data channels at high data rates, and (ii) the data streams input to a processing node (PN) are transmitted as phase-encoded signals over an optical network. We experimentally demonstrate the operation of optically-assisted reconfigurable average of two 4-phase-encoded data channels at 10- and 20-Gbaud rates. Our input signals are two streams of 2-bit numbers representing a binary floating-point format, and the operation results in 7-phase-encoded output signals represented by 3-bit numbers. The average operation is achieved in three stages: (1) phase encoding and division-using an optical modulator to encode the data streams; (2) summation-using a highly nonlinear fiber (HNLF); and (3) multicast-using a periodically poled lithium niobate (PPLN) waveguide to multicast back the result into the original signal wavelengths. The experimental results validate the concept, and the measured penalties indicate that: (i) the error vector magnitudes (EVMs) of optical signals increase at each stage and reach ∼18-21% for the final multicast results, and (ii) compared to the inputs, the optical signal-to-noise ratio (OSNR) penalty of output is ∼6.7 dB for the 10-Gbaud rate and ∼6.9 dB for the 20-Gbaud rate at a bit error rate (BER) of 3.8e-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA