Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 72(8): 1385-1395, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182396

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is characterized by fibrosis, vascular disease, and inflammation. Adenosine signaling plays a central role in fibroblast activation. We undertook this study to evaluate the therapeutic effects of adenosine depletion with PEGylated adenosine deaminase (PEG-ADA) in preclinical models of SSc. METHODS: The effects of PEG-ADA on inflammation, vascular remodeling, and tissue fibrosis were analyzed in Fra-2 mice and in a B10.D2→BALB/c (H-2d ) model of sclerodermatous chronic graft-versus-host disease (GVHD). The effects of PEG-ADA were confirmed in vitro in a human full-thickness skin model. RESULTS: PEG-ADA effectively inhibited myofibroblast differentiation and reduced pulmonary fibrosis by 34.3% (with decreased collagen expression) (P = 0.0079; n = 6), dermal fibrosis by 51.8% (P = 0.0006; n = 6), and intestinal fibrosis by 17.7% (P = 0.0228; n = 6) in Fra-2 mice. Antifibrotic effects of PEG-ADA were also demonstrated in sclerodermatous chronic GVHD (reduced by 38.4%) (P = 0.0063; n = 8), and in a human full-thickness skin model. PEG-ADA treatment decreased inflammation and corrected the M2/Th2/group 2 innate lymphoid cell 2 bias. Moreover, PEG-ADA inhibited proliferation of pulmonary vascular smooth muscle cells (reduced by 40.5%) (P < 0.0001; n = 6), and prevented thickening of the vessel walls (reduced by 39.6%) (P = 0.0028; n = 6) and occlusions of pulmonary arteries (reduced by 63.9%) (P = 0.0147; n = 6). Treatment with PEG-ADA inhibited apoptosis of microvascular endothelial cells (reduced by 65.4%) (P = 0.0001; n = 6) and blunted the capillary rarefication (reduced by 32.5%) (P = 0.0199; n = 6). RNA sequencing demonstrated that treatment with PEG-ADA normalized multiple pathways related to fibrosis, vasculopathy, and inflammation in Fra-2 mice. CONCLUSION: Treatment with PEG-ADA ameliorates the 3 cardinal features of SSc in pharmacologically relevant and well-tolerated doses. These findings may have direct translational implications, as PEG-ADA has already been approved by the Food and Drug Administration for the treatment of patients with ADA-deficient severe combined immunodeficiency disease.


Asunto(s)
Adenosina Desaminasa/farmacología , Esclerodermia Sistémica/tratamiento farmacológico , Piel/patología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/inmunología , Fibrosis/patología , Antígeno 2 Relacionado con Fos/metabolismo , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación , Ratones , Ratones Endogámicos BALB C , Modelos Anatómicos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/patología , Piel/efectos de los fármacos , Piel/inmunología , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/inmunología , Enfermedades Vasculares/patología
2.
Nat Chem Biol ; 13(4): 425-431, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192412

RESUMEN

Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative-feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Hipocampo/citología , Neuronas/metabolismo , Animales , Células Cultivadas , Ratas , Ratas Sprague-Dawley
3.
Mol Biol Cell ; 26(10): 1935-46, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25788287

RESUMEN

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master metabolic regulator that has been shown to inhibit the establishment of neuronal polarity/axogenesis under energy stress conditions, whereas brain-specific kinase (BRSK) promotes the establishment of axon-dendrite polarity and synaptic development. However, little information exists regarding the localized activity and regulation of these kinases in developing neurons. In this study, using a fluorescence resonance energy transfer (FRET)-based activity reporter that responds to both AMPK and BRSK, we found that BRSK activity is elevated in the distal region of axons in polarized hippocampal neurons before any stimulation and does not respond to either Ca(2+) or 2-deoxyglucose (2-DG) stimulation. In contrast, AMPK activity is stimulated by either Ca(2+) or 2-DG in the soma, dendrites, and axons of hippocampal neurons, with maximal stimulated activity observed in the distal region of the axon. Our study shows that the activities of both AMPK and BRSK are polarized in developing hippocampal neurons, with high levels in the distal region of extended axons.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hipocampo/enzimología , Neurogénesis/fisiología , Neuronas/enzimología , Receptor EphA5/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 289(7): 4055-69, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24366864

RESUMEN

CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.


Asunto(s)
Adipoquinas/metabolismo , Peso Corporal/fisiología , Citocinas/metabolismo , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Pez Cebra/metabolismo , Adipoquinas/genética , Proteína Relacionada con Agouti/biosíntesis , Proteína Relacionada con Agouti/genética , Animales , Citocinas/genética , Humanos , Masculino , Ratones , Neuropéptido Y/biosíntesis , Neuropéptido Y/genética , Estructura Terciaria de Proteína , Ratas , Pez Cebra/genética
5.
Exp Neurobiol ; 21(2): 52-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22792025

RESUMEN

5'-adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved cellular and organismal energy integrator that responds to numerous stimuli with the overall intention to facilitate energy conservation and enhance energy balance while also affecting cellular survival and behaviors. AMPK has been appreciated for many years to function in peripheral organs that contribute to the generation or disposition of cellular energy, while its role in the brain has been only recently elucidated. While acknowledged to respond to organismal energy balance, we now recognize that energy balance within neurons also affects the brain's response to these peripheral signals. In this review, we discuss AMPK's regulation and its ever-expanding role as a neuronal energy integrator at both the cellular and systems levels.

6.
J Neurosci Res ; 90(2): 422-34, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22002503

RESUMEN

In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O(2)) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate-activated protein kinase (AMPK) was more activated in 5% O(2) and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O(2). These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro.


Asunto(s)
Corteza Cerebral/fisiología , Metabolismo Energético/fisiología , Modelos Neurológicos , Neuronas/fisiología , Consumo de Oxígeno/fisiología , Animales , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
7.
J Neurochem ; 109 Suppl 1: 17-23, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19393004

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro-humoral signals to assess organismal energy balance. A variety of disease states may involve AMPK, so determining the underlying mechanisms is important. We review the impact of altered AMPK activity under physiological (hunger, satiety) and pathophysiological (stroke) conditions, as well as therapeutic manipulations of AMPK that may improve energy balance.


Asunto(s)
Química Encefálica/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metabolismo Energético/fisiología , Animales , Química Encefálica/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Estrés Oxidativo/fisiología
8.
J Neurosci Res ; 84(7): 1402-14, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16998891

RESUMEN

The present work investigates the role of thromboxane A(2) (TXA(2)) receptors in the development of oligodendrocytes (OLGs). The results demonstrate that the proteins of the TXA(2) signaling pathway, i.e., cyclooxygenase (COX-1), TXA(2) synthase (TS), and TXA(2) receptor (TPR) are expressed in the developing rat brain during myelination. Furthermore, culture of OLG progenitor cells (OPCs) revealed that the expression levels of these proteins as well as TXA(2) synthesis increase during OLG maturation. Separate studies established that activation of TPRs by the agonist U46619 increases intracellular calcium in both OPCs and OLGs as visualized by digital fluorescence imaging. Immunocytochemical staining demonstrated that TPRs are localized in the plasma membrane and perinuclear compartments in OPCs. However, during OLG differentiation, TPRs shift their localization pattern and also become associated with the nuclear compartment. This shift to nuclear localization was confirmed by biochemical analysis in cultured cells and by immunocytochemical analysis in developing rat brain. Finally, it was found that U46619 activation of TPRs in maturing OLGs resulted in enhanced myelin basic protein (MBP) expression. Alternatively, inhibition of endogenous TPR signaling led to reduced MBP expression. Furthermore, TPR-mediated MBP expression was found to be associated with increased transcription from the MBP promoter using a MBP-luciferase reporter. Collectively, these findings suggest a novel TPR signaling pathway in OLGs and a potential role for this signaling during OLG maturation and myelin production.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Básica de Mielina/metabolismo , Oligodendroglía/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/fisiología , Transducción de Señal/fisiología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Western Blotting/métodos , Encéfalo/citología , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Gangliósidos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Tromboxano B2/metabolismo , Factores de Tiempo , Transfección/métodos
9.
J Physiol ; 574(Pt 1): 85-93, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16690704

RESUMEN

The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a metabolic and stress sensor that has been functionally conserved throughout eukaryotic evolution. Activation of the AMPK system by various physiological or pathological stimuli that deplete cellular energy levels promotes activation of energy restorative processes and inhibits energy consumptive processes. AMPK has a prominent role not only as a peripheral sensor of energy balance, but also in the CNS as a multifunctional metabolic sensor. Recent work suggests that AMPK plays an important role in maintaining whole body energy balance by coordinating feeding behaviour through the hypothalamus in conjunction with peripheral energy expenditure. In addition, brain AMPK is activated by energy-poor conditions induced by hypoxia, starvation, and ischaemic stroke. Under these conditions, AMPK is activated as a protective response in an attempt to restore cellular homeostasis. However in vivo, it appears that the overall consequence of activation of AMPK is more complex than previously imagined, in that over-activation may be deleterious rather than neuroprotective. This review discusses recent findings that support the role of AMPK in brain as a multidimensional energy sensor and the consequences of its activation or inhibition under physiological and pathological states.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Homeostasis/fisiología , Humanos
10.
J Neurochem ; 93(2): 257-68, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15816849

RESUMEN

Thromboxane A(2) receptors (TP) were previously localized to discrete regions in the rat brain on myelinated fiber tracts and oligodendrocytes (OLGs). The present studies extended these findings and investigated the effects of TP signaling on cell proliferation, survival, and gene expression in OLG progenitor cells (OPCs) and OLGs. It was found that the TP agonist, U46619 stimulated the proliferation of OPCs and promoted the survival of mature OLGs. Examination of the early gene expression events involved in OPC proliferation, revealed that c-fos expression was substantially increased by U46619 stimulation. Treatment of OPCs or OLGs with U46619 caused activation of the mitogen-activated protein kinases (MAPK) ERK 1/2. In OPCs this activation was blocked by inhibition of src. However, in OLGs this phosphorylation was not only blocked by inhibition of src but also by inhibition of protein kinase C (PKC). Furthermore, U46619 was found to increase CREB phosphorylation in both OPCs and OLGs. Similar to ERK 1/2 activation, there was a divergence in the mechanism of the TP-mediated CREB response for each cell type. Specifically, U46619 activation was attenuated by src and protein kinase A (PKA) inhibition in OPCs, whereas in OLGs this effect was blocked by inhibition of src, PKA as well as by inhibition of PKC. Collectively, these results provide the first demonstration that TP-activated nuclear signaling events are involved in the proliferation of OPCs, the survival of mature OLGs, and the stimulation of gene expression.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Receptores de Tromboxano A2 y Prostaglandina H2/fisiología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Tromboxano A2 y Prostaglandina H2/agonistas , Receptores de Tromboxano A2 y Prostaglandina H2/biosíntesis
11.
Cell Signal ; 16(5): 521-33, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14751539

RESUMEN

Thromboxane A2 receptors (TPs) are widely distributed among different organ systems and have been localized on both cell membranes and intracellular structures. Following the initial cloning of this receptor class from human placenta, the deduced amino acid sequence predicted seven-transmembrane spanning regions, four extracellular domains and four intracellular domains, making TP a member of the seven-transmembrane G-protein-coupled receptor (GPCR) super family. A single gene on chromosome 19p13.3 leads to the expression of two separate TP isoforms: TPalpha which is broadly expressed in numerous tissues, and a splice variant termed TPbeta which may have a more limited tissue distribution. Mutagenesis, photoaffinity labelling, and immunological studies have indicated that the ligand binding domains for this receptor may reside in both the transmembrane (TM) and extracellular regions of the receptor protein. In addition, separate studies have provided evidence that this receptor can couple to at least four separate G protein families. As a consequence, TP signalling has been shown to result in a broad range of cellular responses including phosphoinositide metabolism, calcium redistribution, cytoskeletal arrangement, integrin activation, kinase activation, and the subsequent nuclear signalling events involved in DNA synthesis, cell proliferation, cell survival and cell death. While activation of these different signalling cascades can all derive from TP stimulation, the relative signalling preference for a given cascade appears to be both tissue and cell specific. Finally, separate studies have indicated that TP signalling capacity can be both down-regulated by protein kinase activation and up-regulated by GPCR cross-signalling. Thus, the multitude of signalling events which derive from TP activation can themselves be modulated by endogenous cellular messengers.


Asunto(s)
Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Transducción de Señal/fisiología , Tromboxano A2/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Antagonistas de Prostaglandina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA