Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(33): 11486-11494, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32532817

RESUMEN

T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígeno HLA-A2/inmunología , Proteínas de Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Antígenos de Neoplasias/química , Cristalografía por Rayos X , Antígeno HLA-A2/química , Humanos , Modelos Moleculares , Proteínas de Neoplasias/química , Péptidos/química , Péptidos/inmunología , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/química
2.
Sci Rep ; 6: 18851, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758806

RESUMEN

Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Reacciones Cruzadas/inmunología , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Imitación Molecular , Receptores de Antígenos de Linfocitos T/metabolismo , Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cardiotoxicidad , Línea Celular , Conectina/química , Conectina/inmunología , Conectina/metabolismo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Ingeniería Genética , Humanos , Modelos Moleculares , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Unión Proteica/inmunología , Conformación Proteica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
3.
Biopolymers ; 93(9): 811-22, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20578000

RESUMEN

Serine palmitoyltransferase (SPT) catalyses the first step in the de novo biosynthesis of sphingolipids (SLs). It uses a decarboxylative Claisen-like condensation reaction to couple L-serine with palmitoyl-CoA to generate a long-chain base product, 3-ketodihydrosphingosine. SLs are produced by mammals, plants, yeast, and some bacteria, and we have exploited the complete genome sequence of Sphingomonas wittichii to begin a complete analysis of bacterial sphingolipid biosynthesis. Here, we describe the enzymatic characterization of the SPT from this organism and present its high-resolution x-ray structure. Moreover, we identified an open reading frame with high sequence homology to acyl carrier proteins (ACPs) that are common to fatty acid biosynthetic pathways. This small protein was co-expressed with the SPT and we isolated and characterised the apo- and holo-forms of the ACP. Our studies suggest a link between fatty acid and sphingolipid metabolism.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Sphingomonas/metabolismo , Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/genética , Genoma Bacteriano/fisiología , Sistemas de Lectura Abierta/fisiología , Palmitoil Coenzima A/genética , Palmitoil Coenzima A/metabolismo , Serina C-Palmitoiltransferasa/genética , Sphingomonas/genética , Esfingosina/análogos & derivados , Esfingosina/biosíntesis , Esfingosina/genética
4.
Mol Biosyst ; 6(9): 1682-93, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20445930

RESUMEN

Cycloserine (CS, 4-amino-3-isoxazolidone) is a cyclic amino acid mimic that is known to inhibit many essential pyridoxal 5'-phosphate (PLP)-dependent enzymes. Two CS enantiomers are known; D-cycloserine (DCS, also known as Seromycin) is a natural product that is used to treat resistant Mycobacterium tuberculosis infections as well as neurological disorders since it is a potent NMDA receptor agonist, and L-cycloserine (LCS) is a synthetic enantiomer whose usefulness as a drug has been hampered by its inherent toxicity arising through inhibition of sphingolipid metabolism. Previous studies on various PLP-dependent enzymes revealed a common mechanism of inhibition by both enantiomers of CS; the PLP cofactor is disabled by forming a stable 3-hydroxyisoxazole/pyridoxamine 5'-phosphate (PMP) adduct at the active site where the cycloserine ring remains intact. Here we describe a novel mechanism of CS inactivation of the PLP-dependent enzyme serine palmitoyltransferase (SPT) from Sphingomonas paucimobilis. SPT catalyses the condensation of l-serine and palmitoyl-CoA, the first step in the de novo sphingolipid biosynthetic pathway. We have used a range of kinetic, spectroscopic and structural techniques to postulate that both LCS and DCS inactivate SPT by transamination to form a free pyridoxamine 5'-phosphate (PMP) and beta-aminooxyacetaldehyde that remain bound at the active site. We suggest this occurs by ring opening of the cycloserine ring followed by decarboxylation. Enzyme kinetics show that inhibition is reversed by incubation with excess PLP and that LCS is a more effective SPT inhibitor than DCS. UV-visible spectroscopic data, combined with site-directed mutagenesis, suggest that a mobile Arg(378) residue is involved in cycloserine inactivation of SPT.


Asunto(s)
Cicloserina/farmacología , Inhibidores Enzimáticos/farmacología , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo , Cromatografía Liquida , Cicloserina/química , Inhibidores Enzimáticos/química , Espectrometría de Masas , Estructura Molecular , Estructura Secundaria de Proteína , Serina C-Palmitoiltransferasa/genética , Sphingomonas/enzimología
5.
J Biol Chem ; 284(25): 17328-17339, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19376777

RESUMEN

Sphingolipid biosynthesis begins with the condensation of L-serine and palmitoyl-CoA catalyzed by the PLP-dependent enzyme serine palmitoyltransferase (SPT). Mutations in human SPT cause hereditary sensory autonomic neuropathy type 1, a disease characterized by loss of feeling in extremities and severe pain. The human enzyme is a membrane-bound hetereodimer, and the most common mutations are located in the enzymatically incompetent monomer, suggesting a "dominant" or regulatory effect. The molecular basis of how these mutations perturb SPT activity is subtle and is not simply loss of activity. To further explore the structure and mechanism of SPT, we have studied the homodimeric bacterial enzyme from Sphingomonas paucimobilis. We have analyzed two mutants (N100Y and N100W) engineered to mimic the mutations seen in hereditary sensory autonomic neuropathy type 1 as well as a third mutant N100C designed to mimic the wild-type human SPT. The N100C mutant appears fully active, whereas both N100Y and N100W are significantly compromised. The structures of the holoenzymes reveal differences around the active site and in neighboring secondary structure that transmit across the dimeric interface in both N100Y and N100W. Comparison of the l-Ser external aldimine structures of both native and N100Y reveals significant differences that hinder the movement of a catalytically important Arg(378) residue into the active site. Spectroscopic analysis confirms that both N100Y and N100W mutants subtly affect the chemistry of the PLP. Furthermore, the N100Y and R378A mutants appear less able to stabilize a quinonoid intermediate. These data provide the first experimental insight into how the most common disease-associated mutations of human SPT may lead to perturbation of enzyme activity.


Asunto(s)
Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Dominio Catalítico/genética , Cristalografía por Rayos X , Cartilla de ADN/genética , Neuropatías Hereditarias Sensoriales y Autónomas/enzimología , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Iminas/química , Iminas/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Imitación Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina C-Palmitoiltransferasa/genética , Especificidad de la Especie , Espectrofotometría , Espectrofotometría Ultravioleta , Sphingomonas/enzimología , Sphingomonas/genética , Electricidad Estática , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA