Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1305: 342582, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677838

RESUMEN

BACKGROUND: Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS: In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE: This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.


Asunto(s)
Colorantes Fluorescentes , Paladio , Paladio/química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cianuros/análisis , Naftalenos/química , Naftalenos/toxicidad , Células HeLa , Imagen Óptica , Límite de Detección , Colorimetría/métodos , Estructura Molecular , Espectrometría de Fluorescencia
2.
J Agric Food Chem ; 71(1): 802-814, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548786

RESUMEN

Three simple dipodal artificial acyclic symmetric receptors, SDO, SDM, and SDP, driven by positional isomerism based on xylelene scaffolds were designed, synthesized, and characterized by 1H NMR, 13C NMR, and mass spectroscopy techniques. Probes SDO, SDM, and SDP demonstrated selective detection of Ag+ metal ions and amino acid l-histidine in a DMSO-H2O solution (1:1 v/v, HEPES 50 mM, pH = 7.4). The detection of Ag+ metal ions occurred in three ways: (i) inhibition of the photoinduced electron-transfer (PET) process, (ii) blueshifted fluorescence enhancement via the intramolecular charge-transfer (ICT) process, and (iii) restricted rotation of the dangling benzylic scaffold following coordination with a Ag+ metal ion. Job's plot analysis and quantum yields confirm the binding of probes to Ag+ in 1:1, 1:2, and 1:2 ratios with LODs and LOQs found to be 1.3 µM and 3.19 × 10-7 M, 6.40 × 10-7 and 2.44 × 10 -6 M, and 9.76 × 10-7 and 21.01 × 10-7 M, respectively. 1H NMR titration, HRMS, ESI-TOF, IR analysis, and theoretical DFT investigations were also used to establish the binding stoichiometry. Furthermore, the probes were utilized for the detection of Ag+ ions in water samples, food samples, soil analysis, and bacterial imaging in Escherichia coli cells and a molecular logic gate was constructed.


Asunto(s)
Colorantes Fluorescentes , Plata , Plata/análisis , Colorantes Fluorescentes/química , Isomerismo , Histidina , Espectrometría de Fluorescencia/métodos , Iones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA