Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 4354-4360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711185

RESUMEN

Random forests (RFs) are a widely used modelling tool capable of feature selection via a variable importance measure (VIM), however, a threshold is needed to control for false positives. In the absence of a good understanding of the characteristics of VIMs, many current approaches attempt to select features associated to the response by training multiple RFs to generate statistical power via a permutation null, by employing recursive feature elimination, or through a combination of both. However, for high-dimensional datasets these approaches become computationally infeasible. In this paper, we present RFlocalfdr, a statistical approach, built on the empirical Bayes argument of Efron, for thresholding mean decrease in impurity (MDI) importances. It identifies features significantly associated with the response while controlling the false positive rate. Using synthetic data and real-world data in health, we demonstrate that RFlocalfdr has equivalent accuracy to currently published approaches, while being orders of magnitude faster. We show that RFlocalfdr can successfully threshold a dataset of 106 datapoints, establishing its usability for large-scale datasets, like genomics. Furthermore, RFlocalfdr is compatible with any RF implementation that returns a VIM and counts, making it a versatile feature selection tool that reduces false discoveries.

2.
Comput Struct Biotechnol J ; 20: 2942-2950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677774

RESUMEN

New SARS-CoV-2 variants emerge as part of the virus' adaptation to the human host. The Health Organizations are monitoring newly emerging variants with suspected impact on disease or vaccination efficacy as Variants Being Monitored (VBM), like Delta and Omicron. Genetic changes (SNVs) compared to the Wuhan variant characterize VBMs with current emphasis on the spike protein and lineage markers. However, monitoring VBMs in such a way might miss SNVs with functional effect on disease. Here we introduce a lineage-agnostic genome-wide approach to identify SNVs associated with disease. We curated a case-control dataset of 10,520 samples and identified 117 SNVs significantly associated with adverse patient outcome. While 40% (47) SNV are already monitored and 36% (43) are in the spike protein, we also identified 70 new SNVs that are associated with disease outcome. 31 of these are disease-worsening and predominantly located in the 3'-5' exonuclease (NSP14) with structural modelling revealing a concise cluster in the Zn binding domain that has known host-immune modulating function. Furthermore, we generate clade-independent VBM groupings by identifying interacting SNVs (epistasis). We find 37 sets of higher-order epistatic interactions joining 5 genomic regions (nsp3, nsp14, Spike S1, ORF3a, N). Structural modelling of these regions provides insights into potential mechanistic pathways of increased virulence as well as orthogonal methods of validation. Clade-independent monitoring of functionally interacting (epistasis, co-evolution) SNVs detected emerging VBM a week before they were flagged by Health Organizations and in conjunction with structural modelling provides faster, mechanistic insight into emerging strains to guide public health interventions.

3.
Genome Med ; 14(1): 58, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637530

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Genómica , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Microambiente Tumoral/genética
4.
Cancer Res ; 82(7): 1208-1221, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149587

RESUMEN

G9a and EZH2 are two histone methyltransferases commonly upregulated in several cancer types, yet the precise roles that these enzymes play cooperatively in cancer is unclear. We demonstrate here that frequent concurrent upregulation of both G9a and EZH2 occurs in several human tumors. These methyltransferases cooperatively repressed molecular pathways responsible for tumor cell death. In genetically distinct tumor subtypes, concomitant inhibition of G9a and EZH2 potently induced tumor cell death, highlighting the existence of tumor cell survival dependency at the epigenetic level. G9a and EZH2 synergistically repressed expression of genes involved in the induction of endoplasmic reticulum (ER) stress and the production of reactive oxygen species. IL24 was essential for the induction of tumor cell death and was identified as a common target of G9a and EZH2. Loss of function of G9a and EZH2 activated the IL24-ER stress axis and increased apoptosis in cancer cells while not affecting normal cells. These results indicate that G9a and EZH2 promotes the evasion of ER stress-mediated apoptosis by repressing IL24 transcription, therefore suggesting that their inhibition may represent a potential therapeutic strategy for solid cancers. SIGNIFICANCE: These findings demonstrate a novel role for G9a and EZH2 histone methyltransferases in suppressing apoptosis, which can be targeted with small molecule inhibitors as a potential approach to improve solid cancer treatment.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Neoplasias , Apoptosis/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
Genome Med ; 14(1): 3, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012638

RESUMEN

BACKGROUND: Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models. METHODS: Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC. RESULTS: PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature. CONCLUSIONS: EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Antineoplásicos/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Genómica , Xenoinjertos , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancers (Basel) ; 13(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669182

RESUMEN

Genetic and epigenetic factors contribute to the development of cancer. Epigenetic dysregulation is common in gynaecological cancers and includes altered methylation at CpG islands in gene promoter regions, global demethylation that leads to genome instability and histone modifications. Histones are a major determinant of chromosomal conformation and stability, and unlike DNA methylation, which is generally associated with gene silencing, are amenable to post-translational modifications that induce facultative chromatin regions, or condensed transcriptionally silent regions that decondense resulting in global alteration of gene expression. In comparison, other components, crucial to the manipulation of chromatin dynamics, such as histone modifying enzymes, are not as well-studied. Inhibitors targeting DNA modifying enzymes, particularly histone modifying enzymes represent a potential cancer treatment. Due to the ability of epigenetic therapies to target multiple pathways simultaneously, tumours with complex mutational landscapes affected by multiple driver mutations may be most amenable to this type of inhibitor. Interrogation of the actionable landscape of different gynaecological cancer types has revealed that some patients have biomarkers which indicate potential sensitivity to epigenetic inhibitors. In this review we describe the role of epigenetics in gynaecological cancers and highlight how it may exploited for treatment.

7.
Front Genet ; 12: 771892, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186003

RESUMEN

Health Interpreters enable effective communication between health practitioners and patients with limited knowledge of the predominant language. This study developed and evaluated a training session introducing Health Interpreters to genetics. The online training was delivered multiple times as a single 2-h session comprising lectures and activities. Participants completed questionnaires (pre-, post-, and 6-months follow-up) to assess the impact of training on knowledge, attitude, self-efficacy, and self-reported practice behaviour. Questionnaires were analysed using descriptive statistics, Fisher's Exact, or independent t-test. In total, 118 interpreters participated in the training sessions. Respondent knowledge improved, with gains maintained at 6-months (p < 0.01). There were no changes in self-efficacy, and attitudes. Training did not change self-reported practice behaviour, but there was notable pre-existing variability in participants' methods of managing unknown genetic words. Most respondents agreed that training was useful (93%) and relevant (79%) to their work. More respondents reported learning more from the case study activity (86%) than the group activity (58%). Health Interpreters found the training acceptable and demonstrated sustained improvement in knowledge of genetic concepts. Increased delivery of this training and associated research is needed to assess findings in a larger cohort and to measure the impact on patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...