Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1197805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457712

RESUMEN

Background: Monocyte miRNAs govern both protective and pathological responses during tuberculosis (TB) through their differential expression and emerged as potent targets for biomarker discovery and host-directed therapeutics. Thus, this study examined the miRNA profile of sorted monocytes across the TB disease spectrum [drug-resistant TB (DR-TB), drug-sensitive TB (DS-TB), and latent TB] and in healthy individuals (HC) to understand the underlying pathophysiology and their regulatory mechanism. Methods: We sorted total monocytes including three subsets (HLA-DR+CD14+, HLA-DR+CD14+CD16+, and HLA-DR+CD16+cells) from peripheral blood mononuclear cells (PBMCs) of healthy and TB-infected individuals through flow cytometry and subjected them to NanoString-based miRNA profiling. Results: The outcome was the differential expression of 107 miRNAs particularly the downregulation of miRNAs in the active TB groups (both drug-resistant and drug-sensitive). The miRNA profile revealed differential expression signatures: i) decline of miR-548m in DR-TB alone, ii) decline of miR-486-3p in active TB but significant elevation only in LTB iii) elevation of miR-132-3p only in active TB (DR-TB and DS-TB) and iv) elevation of miR-150-5p in DR-TB alone. The directionality of functions mediated by monocyte miRNAs from Gene Set Enrichment Analysis (GSEA) facilitated two phenomenal findings: i) a bidirectional response between active disease (activation profile in DR-TB and DS-TB compared to LTB and HC) and latent infection (suppression profile in LTB vs HC) and ii) hyper immune activation in the DR-TB group compared to DS-TB. Conclusion: Thus, monocyte miRNA signatures provide pathological clues for altered monocyte function, drug resistance, and disease severity. Further studies on monocyte miRNAs may shed light on the immune regulatory mechanism for tuberculosis.


Asunto(s)
MicroARNs , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Monocitos , MicroARNs/genética , MicroARNs/metabolismo , Leucocitos Mononucleares , Regulación hacia Abajo , Antígenos HLA-DR , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo , Gravedad del Paciente
2.
3 Biotech ; 12(11): 306, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276461

RESUMEN

Curcumin (diferuloylmethane) is bioactive phenolic compound which exerts diverse antimetastatic effect. Several studies have reported the antimetastatic effect of curcumin by its ability to modulate the epithelial-to-mesenchymal transition (EMT) process in different cancers, but underlying molecular mechanism is poorly understood. EMT is a highly conserved biological process in which epithelial cells acquire mesenchymal-like characteristics by losing their cell-cell junctions and polarity. As a consequence, deviation in cellular mechanism leads to cancer metastasis and thereby death. In this perspective, we explored the antimetastatic potential and mechanism of curcumin on the EMT process by establishing in vitro EMT model in lungs cancer (A549) cells induced by TGF-ß1. Our results showed that curcumin mitigates EMT by regulating the expression of crucial mesenchymal markers such as MMP2, vimentin and N-cadherin. Besides, the transcriptional analysis revealed that the curcumin treatment differentially regulated the expression of 75 genes in NanoString nCounter platform. Further protein-protein interaction network and clusters analysis of differentially expressed genes revealed their involvement in essential biological processes that plays a key role during EMT transition. Altogether, the study provides a comprehensive overview of the antimetastatic potential of curcumin in TGF-ß1-induced EMT in lung cancer cells. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03360-7.

3.
BMC Genomics ; 23(1): 5, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34983375

RESUMEN

BACKGROUND: Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. METHODS: Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. RESULTS: Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. CONCLUSIONS: Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies.


Asunto(s)
Aspergillus flavus , Células Epiteliales/inmunología , Regulación de la Expresión Génica/inmunología , Aspergillus flavus/genética , Línea Celular , Quimiocinas/inmunología , Córnea/citología , Córnea/microbiología , Células Epiteliales/microbiología , Humanos , Inmunidad , Transducción de Señal , Esporas Fúngicas
4.
Planta ; 251(1): 28, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31802261

RESUMEN

MAIN CONCLUSION: Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin. As this plant belongs to an endemic threatened category, genomic resources are not available hampering exploration on the molecular basis of cerpegin accumulation till now. Therefore, we undertook high-throughput metabolomic and transcriptomic analyses using different tissues from two varieties namely, C. bulbosa var. bulbosa and C. bulbosa var. lushii. Metabolomic analysis revealed spatial and differential accumulation of various metabolites. We chemically synthesized and characterized the cerpegin and its derivatives by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Importantly, these comparisons suggested the presence of cerpegin and 5-allyl cerpegin in all C. bulbosa tissues. Further, de novo transcriptome analysis indicated the presence of significant transcripts for secondary metabolic pathways through the Kyoto encyclopedia of genes and genomes database. Tissue-specific profiling of transcripts and metabolites showed a significant correlation, suggesting the intricate mechanism of cerpegin biosynthesis. The expression of potential candidate genes from the proposed cerpegin biosynthetic pathway was further validated by qRT-PCR and NanoString nCounter. Overall, our findings propose a potential route of cerpegin biosynthesis. Identified transcripts and metabolites have built a foundation as new molecular resources that could facilitate future research on biosynthesis, regulation, and engineering of cerpegin or other important metabolites in such non-model plants.


Asunto(s)
Apocynaceae/genética , Apocynaceae/metabolismo , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Metabolómica , Piridonas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Análisis de Componente Principal , Piridonas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
BMC Genomics ; 16: 413, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017011

RESUMEN

BACKGROUND: Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as "Holy basil" in India. This plant is mentioned in the ancient texts of Ayurveda as an "elixir of life" (life saving) herb and worshipped for over 3000 years due to its healing properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms. RESULTS: The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules. CONCLUSION: The genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species.


Asunto(s)
Genoma de Planta , Ocimum/genética , Proteínas de Plantas/genética , Genoma del Cloroplasto , Medicina Ayurvédica , Repeticiones de Microsatélite , Ocimum/química , Filogenia , Propanoles/química , Análisis de Secuencia de ADN
6.
RNA ; 14(10): 2104-14, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18719242

RESUMEN

Little is known about the protein complexes required for microRNA formation and function. Here we used native gel electrophoresis to identify miRNA ribonucleoprotein complexes (miRNPs) in Caenorhabditis elegans. Our data reveal multiple distinct miRNPs that assemble on the let-7 miRNA in vitro. The formation of these complexes is affected but not abolished by alg-1 or alg-2 null mutations. The largest complex (M*) with an estimated molecular mass of >669 kDa cofractionates with the known RISC factors ALG-1, VIG-1, and TSN-1. The M* complex and two complexes, M3 and M4, with similar molecular weights of approximately 500 kDa, also assemble on all other miRNAs used in our experiments. Two smaller complexes, M1 (approximately 160 kDa) and M2 (approximately 250 kDa), assemble on the members of the let-7 miRNAs family but not lin-4 or mir-234, and their formation is highly dependent on specific sequences in the 5' seed region of let-7. Moreover, an unidentified protein, p40, which only appears in the M1 and M2 complexes, was detected by UV triggered cross-linking to let-7 but not to lin-4. The cross-linking of p40 to let-7 is also dependent on the let-7 sequence. Another unidentified protein, p13, is detected in all let-7 binding complexes and lin-4 cross-linked products. Our data suggest that besides being present in certain large miRNPs with sizes similar to reported RISC, the let-7 miRNA also assembles with specific binding proteins and forms distinct small complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Mutación , Complejo Silenciador Inducido por ARN/genética , Ribonucleoproteínas/genética
7.
Chem Biol ; 9(10): 1053-5, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12401489

RESUMEN

RNAi is routinely used to eliminate gene activity for experimental purposes. However, the precise molecular mechanism of RNAi is unknown. Recent papers partially illuminate this mechanism in human cells, advancing the potential application of RNAi toward the treatment of human disease.


Asunto(s)
Silenciador del Gen/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , Procesamiento Postranscripcional del ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...