Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Genome Biol ; 24(1): 35, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829244

RESUMEN

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Asunto(s)
Pueblo de África Oriental , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico , Expresión Génica , Tanzanía , Variación Genética
3.
Genome Biol ; 23(1): 268, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575460

RESUMEN

BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Caracteres Sexuales , Fenotipo , Lípidos/genética , Polimorfismo de Nucleótido Simple , Pleiotropía Genética
4.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
5.
Nat Genet ; 54(6): 761-771, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654975

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad del Hígado Graso no Alcohólico , Alanina Transaminasa , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores
6.
Nature ; 600(7890): 675-679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887591

RESUMEN

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Grupos de Población
7.
iScience ; 24(11): 103196, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34746691

RESUMEN

The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.

8.
Nat Commun ; 12(1): 4487, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301922

RESUMEN

Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Neoplasias de Células Germinales y Embrionarias/genética , Polimorfismo de Nucleótido Simple , Neoplasias Testiculares/genética , Línea Celular Tumoral , Mapeo Cromosómico , Redes Reguladoras de Genes/genética , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Metaanálisis como Asunto , Neoplasias de Células Germinales y Embrionarias/metabolismo , Mapas de Interacción de Proteínas/genética , Neoplasias Testiculares/metabolismo
9.
PLoS Comput Biol ; 17(2): e1008638, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635861

RESUMEN

In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs. We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct-we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo/métodos , Haplotipos , Dinámica Poblacional , Algoritmos , Animales , Mapeo Cromosómico/métodos , Simulación por Computador , Frecuencia de los Genes , Ligamiento Genético , Genotipo , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Linaje , Polimorfismo de Nucleótido Simple , Programas Informáticos , Secuenciación Completa del Genoma
10.
Science ; 369(6509)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913073

RESUMEN

Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.


Asunto(s)
Variación Genética , Genoma Humano , Herencia Multifactorial , Transcriptoma , Humanos , Especificidad de Órganos
11.
Development ; 146(18)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31488567

RESUMEN

The mammalian cochlea develops from a ventral outgrowth of the otic vesicle in response to Shh signaling. Mouse embryos lacking Shh or its essential signal transduction components display cochlear agenesis; however, a detailed understanding of the transcriptional network mediating this process is unclear. Here, we describe an integrated genomic approach to identify Shh-dependent genes and associated regulatory sequences that promote cochlear duct morphogenesis. A comparative transcriptome analysis of otic vesicles from mouse mutants exhibiting loss (Smoecko ) and gain (Shh-P1) of Shh signaling reveal a set of Shh-responsive genes partitioned into four expression categories in the ventral half of the otic vesicle. This target gene classification scheme provides novel insight into several unanticipated roles for Shh, including priming the cochlear epithelium for subsequent sensory development. We also mapped regions of open chromatin in the inner ear by ATAC-seq that, in combination with Gli2 ChIP-seq, identified inner ear enhancers in the vicinity of Shh-responsive genes. These datasets are useful entry points for deciphering Shh-dependent regulatory mechanisms involved in cochlear duct morphogenesis and establishment of its constituent cell types.


Asunto(s)
Cóclea/embriología , Cóclea/metabolismo , Genoma , Proteínas Hedgehog/metabolismo , Morfogénesis/genética , Animales , Secuencia de Bases , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Transgénicos , Reproducibilidad de los Resultados
12.
Br J Haematol ; 186(4): 574-579, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31119735

RESUMEN

Hereditary thrombocytopenias can be subclassified based on mode of inheritance and platelet size. Here we report a family with autosomal dominant (AD) thrombocytopenia with normal platelet size. Linkage analysis and whole exome sequencing identified the R1026W substitution in ITGA2B as the causative defect. The same mutation has been previously reported in 7 Japanese families/patients with AD thrombocytopenia, but all of these patients had macrothrombocytopenia. This is the first report of a family with AD thrombocytopenia with normal platelet size resulting from mutation in ITGA2B. ITGA2B mutations should therefore be included in the differential diagnosis of this latter disorder.


Asunto(s)
Secuenciación del Exoma , Ligamiento Genético , Integrina alfa2/genética , Mutación , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Plaquetas/metabolismo , Médula Ósea/patología , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Repeticiones de Microsatélite , Linaje , Recuento de Plaquetas , Análisis de Secuencia de ADN
13.
Sci Data ; 6(1): 39, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015470

RESUMEN

We performed whole-genome sequencing for eight inbred rat strains commonly used in genetic mapping studies. They are the founders of the NIH heterogeneous stock (HS) outbred colony. We provide their sequences and variant calls to the rat genomics community. When analyzing the variant calls we identified regions with unusually high levels of heterozygosity. These regions are consistent across the eight inbred strains, including Brown Norway, which is the basis of the rat reference genome. These regions show higher read depths than other regions in the genome and contain higher rates of apparent tri-allelic variant sites. The evidence suggests that these regions may correspond to duplicated segments that were incorrectly overlaid as a single segment in the reference genome. We provide masks for these regions of suspected mis-assembly as a resource for the community to flag potentially false interpretations of mapping or functional results.


Asunto(s)
Genoma , Ratas Endogámicas/genética , Análisis de Secuencia de ADN , Alelos , Animales , Mapeo Cromosómico , Femenino , Ratas
14.
Oncotarget ; 8(41): 69610-69621, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050228

RESUMEN

Mixed adenoneuroendocrine carcinoma (MANEC) in the esophagus is an infrequent but highly malignant cancer with few known genomic alterations. We conducted whole-exome sequencing and whole-genome SNP genotyping for 4-6 tumor subregions and 5-6 adjacent normal tissue sites and 1-3 lymph node metastases in two esophageal MANECs to detect somatic mutations and copy number alterations, and to explore their spatial heterogeneity and underlying clonal structure. TP53 mutation, RB1 deletion or LOH, and PIK3CA, PTEN, KRAS, SOX2, DVL3, TP63 amplification appeared in all regions in both tumors. Mutations falling in known cancer genes tended to show higher variant allele frequencies than those not falling in these genes in at least one of the cases. Phylogenetic analyses of the samples and underlying subclones suggested extensive migration across different tumor regions and from some regions to the lymph nodes. Lymph node metastases appeared to have been seeded by both early founder cells as well as subsequent, locally emerging daughter clones. A phenotypically normal tissue site carried most of the mutations found in neighboring tumor samples, implying field cancerization. Understanding such complex genetic heterogeneity within each patient will be important for guiding clinical decisions.

15.
Blood ; 124(20): 3155-64, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25208887

RESUMEN

Plasminogen is the precursor of the serine protease plasmin, a central enzyme of the fibrinolytic system. Plasma levels of plasminogen vary by almost 2-fold among healthy individuals, yet little is known about its heritability or genetic determinants in the general population. In order to identify genetic factors affecting the natural variation of plasminogen levels, we performed a genome-wide association study and linkage analysis in a sample of 3456 young healthy individuals who participated in the Genes and Blood Clotting Study (GABC) or the Trinity Student Study (TSS). Heritability of plasminogen levels was 48.1% to 60.0%. Tobacco smoking and female sex were associated with higher levels of plasminogen. In the meta-analysis, 11 single-nucleotide polymorphisms (SNPs) in 2 regions reached genome-wide significance (P < 5.0E-8). Of these, 9 SNPs were near the PLG or LPA genes on Chr6q26, whereas 2 were on Chr19q13 and 5' upstream of SIGLEC14. These 11 SNPs represented 4 independent signals and collectively explained 6.8% of plasminogen level variation in the study populations. The strongest association was observed for a nonsynonymous SNP in the PLG gene (R523W). Individuals bearing an additional copy of this allele had an average decrease of 13.4% in plasma plasminogen level.


Asunto(s)
Apolipoproteínas A/genética , Lectinas/genética , Plasminógeno/análisis , Plasminógeno/genética , Receptores de Superficie Celular/genética , Fumar/sangre , Adolescente , Adulto , Estudios de Cohortes , Femenino , Eliminación de Gen , Ligamiento Genético , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Adulto Joven
16.
PLoS One ; 8(7): e69765, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874994

RESUMEN

Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes - HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.


Asunto(s)
Esporas Fúngicas/genética , Levaduras/fisiología , Escala de Lod , Polimorfismo de Nucleótido Simple , Levaduras/genética
17.
PLoS One ; 7(12): e48835, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23239965

RESUMEN

BACKGROUND: Numerous linkage studies have been performed in pedigrees of Autism Spectrum Disorders, and these studies point to diverse loci and etiologies of autism in different pedigrees. The underlying pattern may be identified by an integrative approach, especially since ASD is a complex disorder manifested through many loci. METHOD: Autism spectrum disorder (ASD) was studied through two different and independent genome-scale measurement modalities. We analyzed the results of copy number variation in autism and triangulated these with linkage studies. RESULTS: Consistently across both genome-scale measurements, the same two molecular themes emerged: immune/chemokine pathways and developmental pathways. CONCLUSION: Linkage studies in aggregate do indeed share a thematic consistency, one which structural analyses recapitulate with high significance. These results also show for the first time that genomic profiling of pathways using a recombination distance metric can capture pathways that are consistent with those obtained from copy number variations (CNV).


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Redes y Vías Metabólicas/genética , Niño , Discapacidades del Desarrollo/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
18.
PLoS One ; 4(4): e5352, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19401763

RESUMEN

West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.


Asunto(s)
Proteínas Virales/genética , Virus del Nilo Occidental/genética , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Secuencia Conservada , Bases de Datos de Proteínas , Epítopos de Linfocito T/genética , Evolución Molecular , Variación Genética , Antígenos HLA , Humanos , Datos de Secuencia Molecular , Proteoma , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...